A comparison of Snotel and GHCN/CRU surface temperatures with free-air temperatures at high elevations in the western U.S.: data compatibility and trends

Nick Pepin, M. Losleben, M. Hartman, K. Chowanski

    Research output: Contribution to journalArticlepeer-review

    Abstract

    This paper compares high-elevation surface temperatures based on the Global Historical Climate Network/Climatic Research Unit (GHCN/CRU) and snow telemetry (SNOTEL) datasets, with simultaneous free-air equivalent temperatures, interpolated from NCEP–NCAR reanalysis. Mean monthly temperature anomalies from 1982 to 1999 are examined for 60 SNOTEL and 296 GHCN/CRU sites at elevations over 500 m with relatively homogenous records. The surface/free-air temperature difference ΔT (Ts − Ta) is calculated for both the SNOTEL and GHCN/CRU datasets. Topography influences the correlation between surface and free-air temperature anomalies. Physically realistic diurnal and seasonal changes in ΔT\E are illustrated. Systematic secular trends in surface temperatures, free-air temperatures, and ΔT are revealed, but the sign and magnitude of change depends on location, meaning that regional signals are weak. The Ts trends are positive for most GHCN and CRU sites, and for SNOTEL sites at night. Daytime cooling in the SNOTEL network reduces the mean daily warming trend. The Ta trends are consistently positive for both networks and are often larger than Ts. Thus mean ΔT trends are negative for both datasets. The smaller sample size in the SNOTEL dataset means that error estimates for regional signals are much wider than for the GHCN/CRU dataset. Trend difference maps identify potentially anomalous SNOTEL records. Trends show no correlation with elevation and topography. Surface trends show higher variability and account for most of the uncertainty in ΔT trends. Sensitivity of trends to time period is also discussed. Such changes in the free-air/surface temperature difference may indicate change in the energy balance of mountain areas.
    Original languageEnglish
    Pages (from-to)1967-1985
    Number of pages19
    JournalJournal of Climate
    Volume18
    Issue number12
    DOIs
    Publication statusPublished - Jun 2005

    Fingerprint

    Dive into the research topics of 'A comparison of Snotel and GHCN/CRU surface temperatures with free-air temperatures at high elevations in the western U.S.: data compatibility and trends'. Together they form a unique fingerprint.

    Cite this