A fuzzy approach for interpretation and application of ubiquitous data stream clustering

O. Horovitz, S. Krishnaswamy, M. Gaber

Research output: Contribution to conferencePaperpeer-review

64 Downloads (Pure)


Ubiquitous Data Mining is the process of analysing data emanating from distributed and heterogeneous sources in the form of a continuous stream with mobile and/or embedded devices. Unsupervised learning is clearly beneficial for initial understanding of data streams, and consequently various clustering algorithms have been developed and applied in UDM systems for the purpose of mining data streams. However, unsupervised data mining techniques require human intervention for further understanding and analysis of the clustering results.This becomes an issue as UDM applications aim to support mobile and highly dynamic users/applications and there is a need for real-time decision making and interpretation of results. In this paper we present an approach to automate the annotation of results obtained from ubiquitous data stream clustering to facilitate interpreting and use of the results to enable real-time, mobile decision making.


ConferenceProceedings of Second International Workshop on Knowledge Discovery in Data Streams, in conjunction with the 16th European Conference on Machine Learning and the 9th European Conference on the Principals and Practice of Knowledge Discovery ECML/PKDD


Dive into the research topics of 'A fuzzy approach for interpretation and application of ubiquitous data stream clustering'. Together they form a unique fingerprint.

Cite this