A hybrid spatiotemporal model of PCa dynamics and insights into optimal therapeutic strategies

Andrew Burbanks, Marianna Cerasuolo*, Roberto Ronca, Leo Turner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Downloads (Pure)


Using a hybrid cellular automaton with stochastic elements, we investigate the effectiveness of multiple drug therapies on prostate cancer (PCa) growth. The ability of Androgen Deprivation Therapy to reduce PCa growth represents a milestone in prostate cancer treatment, nonetheless most patients eventually become refractory and develop castration-resistant prostate cancer. In recent years, a "second generation'' drug called enzalutamide has been used to treat advanced PCa, or patients already exposed to chemotherapy that stopped responding to it. However, tumour resistance to enzalutamide is now well known, and in this context, preclinical models and in silico experiments (numerical simulations) are key to understanding the mechanisms of resistance and to assessing therapeutic settings that may delay or prevent the onset of resistance. In our mathematical system, we incorporate cell phenotype switching to model the development of increased drug resistance, and consider the effect of the micro-environment dynamics on necrosis and apoptosis of the tumour cells. The therapeutic strategies that we explore include using a single drug (enzalutamide), and drug combinations (enzalutamide and everolimus (or cabazitaxel)) with different treatment schedules. Our results highlight the effectiveness of alternating therapies, especially alternating enzalutamide and cabazitaxel over a year, and a comparison is made with data taken from TRAMP mice to verify our findings.
Original languageEnglish
Article number108940
Number of pages17
JournalMathematical Biosciences
Early online date13 Dec 2022
Publication statusPublished - 1 Jan 2023


  • prostate cancer
  • mathematical model
  • hybrid cellular automation
  • chemotherapy
  • drug resistance


Dive into the research topics of 'A hybrid spatiotemporal model of PCa dynamics and insights into optimal therapeutic strategies'. Together they form a unique fingerprint.

Cite this