Abstract
This paper presents a continuum-based transverse isotropic model incorporating rate-dependency and fibre dispersion, applied to the planar biaxial deformation of aortic valve (AV) specimens under various stretch rates. The rate dependency of the mechanical behaviour of the AV tissue under biaxial deformation, the (pseudo-) invariants of the right Cauchy-Green deformation-rate tensor View the MathML sourceĊ associated with fibre dispersion, and a new fibre orientation density function motivated by fibre kinematics are presented for the first time. It is shown that the model captures the experimentally observed deformation of the specimens, and characterises a shear-thinning behaviour associated with the dissipative (viscous) kinematics of the matrix and the fibres. The application of the model for predicting the deformation behaviour of the AV under physiological rates is illustrated and an example of the predicted σ−λσ−λ curves is presented. While the development of the model was principally motivated by the AV biomechanics requisites, the comprehensive theoretical approach employed in the study renders the model suitable for application to other fibrous soft tissues that possess similar rate-dependent and structural attributes.
Original language | English |
---|---|
Pages (from-to) | 80-93 |
Number of pages | 14 |
Journal | Journal of the Mechanical Behavior of Biomedical Materials |
Volume | 85 |
Early online date | 26 May 2018 |
DOIs | |
Publication status | Published - 1 Sept 2018 |
Keywords
- aortic valve
- modelling
- fibre dispersion
- rate-dependency
- biaxial deformation
Fingerprint
Dive into the research topics of 'A transverse isotropic constitutive model for the aortic valve tissue incorporating rate-dependency and fibre dispersion: application to biaxial deformation'. Together they form a unique fingerprint.Datasets
-
Dataset for Biaxial stress-stretch data - Porcine aortic valve specimens
Anssari-Benam, A. (Creator), University of Portsmouth, 26 May 2019
DOI: 10.17029/d7c9b8d7-62f8-4f93-b1c0-4d9859435b62
Dataset
File