Abstract
Approximate Bayesian Computation (ABC) is a method to obtain a posterior distribution without a likelihood function, using simulations and a set of distance metrics. For that reason, it has recently been gaining popularity as an analysis tool in cosmology and astrophysics. Its drawback, however, is a slow convergence rate. We propose a novel method, which we call qABC, to accelerate ABC with Quantile Regression. In this method, we create a model of quantiles of distance measure as a function of input parameters. This model is trained on a small number of simulations and estimates which regions of the prior space are likely to be accepted into the posterior. Other regions are then immediately rejected. This procedure is then repeated as more simulations are available. We apply it to the practical problem of estimation of redshift distribution of cosmological samples, using forward modelling developed in previous work. The qABC method converges to nearly same posterior as the basic ABC. It uses, however, only 20% of the number of simulations compared to basic ABC, achieving a fivefold gain in execution time for our problem. For other problems the acceleration rate may vary; it depends on how close the prior is to the final posterior. We discuss possible improvements and extensions to this method.
Original language  English 

Article number  042 
Journal  Journal of Cosmology and Astroparticle Physics 
Volume  2018 
Issue number  2 
DOIs  
Publication status  Published  20 Feb 2018 
Keywords
 cosmological parameters from LSS
 cosmological simulations
Fingerprint
Dive into the research topics of 'Accelerating approximate Bayesian Computation with quantile regression: application to cosmological redshift distributions'. Together they form a unique fingerprint.Datasets

Data availability statement for 'Accelerating approximate Bayesian Computation with quantile regression: application to cosmological redshift distributions'.
Kacprzak, T. (Creator), Herbel, J. (Creator), Amara, A. (Creator) & Réfrégier, A. (Creator), IOP Publishing, 20 Feb 2018
Dataset