## Abstract

Using a simple thermo-hydrodynamic model that respects relativistic causality, we reexamine the analysis of the qualitative features of acoustic oscillations in the photon-baryon fluid. The growing photon mean free path introduces transient effects that can be modelled by the causal generalization of relativistic Navier-Stokes-Fourier theory. Causal thermodynamics provides a more satisfactory hydrodynamic approximation to kinetic theory than the quasi-stationary (and non-causal) approximations arising from standard thermodynamics or from expanding the photon distribution to first order in Thomson scattering time. The causal approach introduces small corrections to the dispersion relation obtained in quasi-stationary treatments. A dissipative contribution to the speed of sound slightly increases the frequency of the oscillations. The diffusion damping scale is slightly increased by the causal corrections. Thus quasi-stationary approximations tend to over-estimate the spacing and under-estimate the damping of acoustic peaks. In our simple model, the fractional corrections at decoupling are ≳10^{-2}.

Original language | English |
---|---|

Article number | 123507 |

Pages (from-to) | 123507 |

Journal | Physical Review D |

Volume | 58 |

Issue number | 12 |

Publication status | Published - 15 Dec 1998 |