Abstract
This investigation accounts for epidemics spreading among interacting populations. The infective disease spreads among the prey, of which only susceptibles reproduce, while infected prey do not grow, recover, reproduce nor compete for resources. The model is general enough to describe a large number of ecosystems, on land, in the air or in the water.
The main results concern the boundedness of the trajectories, the analysis of local and global stability, system's persistency and a threshold property below which the infection disappears. A sufficiently strong disease in the prey may avoid predators extinction and its presence can destabilize an otherwise stable predator‐prey configuration. The occurrence of transcritical, saddle‐node and Hopf‐bifurcations is also shown.
The main results concern the boundedness of the trajectories, the analysis of local and global stability, system's persistency and a threshold property below which the infection disappears. A sufficiently strong disease in the prey may avoid predators extinction and its presence can destabilize an otherwise stable predator‐prey configuration. The occurrence of transcritical, saddle‐node and Hopf‐bifurcations is also shown.
Original language | English |
---|---|
Pages (from-to) | 875-898 |
Journal | Mathematical Methods in the Applied Sciences |
Volume | 32 |
Issue number | 7 |
Early online date | 6 Aug 2008 |
DOIs | |
Publication status | Published - 15 May 2009 |