An enhanced teaching interface for a robot using DMP and GMR

Chunxu Li, Chenguang Yang, Zhaojie Ju, Andy Annamalai

Research output: Contribution to journalArticlepeer-review

108 Downloads (Pure)

Abstract

This paper develops an enhanced teaching interface tested on both a Baxter robot and a KUKA iiwa robot. Movements are collected from a human demonstrator by using a Kinect v2 sensor, and then the data is sent to a remote PC for the teleoperation with Baxter. Meanwhile, data is saved locally for the playback process of the Baxter. The dynamic movement primitive (DMP) is used to model and generalize the movements. In order to learn from multiple demonstrations accurately, dynamic time warping (DTW), is used to pretreat the data recorded by the robot platform and Gaussian mixture model (GMM), aiming to generate multiple patterns after the teaching process, are employed for the calculation of the DMP. Then the Gaussian mixture regression (GMR) algorithm is applied to generate a synthesized trajectory with smaller position errors in 3D space. This proposed approach is tested by performing two tasks on a KUKA iiwa and a Baxter robot.
Original languageEnglish
Pages (from-to)110–121
JournalInternational Journal of Intelligent Robotics and Applications
Volume2
Issue number1
Early online date8 Mar 2018
DOIs
Publication statusPublished - Mar 2018

Fingerprint

Dive into the research topics of 'An enhanced teaching interface for a robot using DMP and GMR'. Together they form a unique fingerprint.

Cite this