TY - JOUR
T1 - Analysis of diatomic bond dissociation and formation in terms of the reaction force and the position-dependent reaction force constant
AU - Murray, J.
AU - Toro-Labbe, A.
AU - Clark, Tim
AU - Politzer, P.
PY - 2009
Y1 - 2009
N2 - Bond dissociation and formation in diatomic molecules are analyzed in terms of the reaction force F(R) and the reaction force constant kappa(R). These were determined for a group of 13 molecules from their extended-Rydberg potential energy functions V(R), which are of near-experimental quality. From F(R) and kappa(R) comes a two-stage description of dissociation/formation. In dissociation, the first stage involves stretching of the bond, which is opposed by an increasingly negative retarding force F(R). This reaches a minimum and then begins to weaken in the second stage, which is the transition from stretched molecule to free atoms. Bond formation begins with the reverse transition, driven by a positive F(R) which reaches a maximum for the stretched molecule and then becomes a decreasing restoring force. In the stages in which the system is a stretched molecule, kappa(R) is positive with its maximum at the equilibrium bond length; it is zero at the minimum or maximum of F(R), and negative throughout the transition stages, going through a minimum. kappa(R)
AB - Bond dissociation and formation in diatomic molecules are analyzed in terms of the reaction force F(R) and the reaction force constant kappa(R). These were determined for a group of 13 molecules from their extended-Rydberg potential energy functions V(R), which are of near-experimental quality. From F(R) and kappa(R) comes a two-stage description of dissociation/formation. In dissociation, the first stage involves stretching of the bond, which is opposed by an increasingly negative retarding force F(R). This reaches a minimum and then begins to weaken in the second stage, which is the transition from stretched molecule to free atoms. Bond formation begins with the reverse transition, driven by a positive F(R) which reaches a maximum for the stretched molecule and then becomes a decreasing restoring force. In the stages in which the system is a stretched molecule, kappa(R) is positive with its maximum at the equilibrium bond length; it is zero at the minimum or maximum of F(R), and negative throughout the transition stages, going through a minimum. kappa(R)
U2 - 10.1007/s00894-008-0400-2
DO - 10.1007/s00894-008-0400-2
M3 - Article
SN - 1610-2940
VL - 15
SP - 701
EP - 706
JO - Journal of Molecular Modeling
JF - Journal of Molecular Modeling
IS - 6
ER -