Abstract
In this study the applicability of the lattice Boltzmann method to oscillatory channel flow with a zero mean velocity has been evaluated. The model has been compared to exact analytical solutions in the laminar case (Reδ < 100, where Reδ is the Reynolds number based on the Stokes layer) for the Womersley parameter 1 < α < 31. In this regime, there was good agreement between numerical and exact analytical solutions. The model was then applied to study the primary instability of oscillatory channel flow with a zero mean velocity. For these transitionary flows the parameters were varied in the range 400 < Reδ < 1000 and 4 < α < 16. Disturbances superimposed on the numerical solution triggered the two-dimensional primary instability. This phenomenon has not been numerically evaluated over the range of α or Reδ currently investigated. The results are consistent with quasi-steady linear stability theories and previous numerical investigations.
Original language | English |
---|---|
Pages (from-to) | 2609-2620 |
Journal | Journal of Physics A: Mathematical and General |
Volume | 36 |
Issue number | 10 |
Early online date | 26 Feb 2003 |
DOIs | |
Publication status | Published - 14 Mar 2003 |