Abstract
Aim: To assess the effects of sight threatening diabetic retinopathy (STDR) on colour vision and to evaluate automated tritan contrast threshold (TCT) testing for STDR screening before significant visual loss.
Method: Patients were recruited from a hospital based photographic screening clinic. All subjects underwent best corrected Snellen visual acuity (BCVA) and those with 20/30 vision or worse were excluded. Automated TCT was performed with a computer controlled, cathode ray tube based technique. The system produced a series of sinusoidal, standardised equiluminant chromatic gratings along a tritan confusion axis. Grading of diabetic retinopathy was made by one of the team of experienced ophthalmic registrars (SpR) using slit lamp biomicroscopy and a 78D lens; HbA(1c) and urine albumin were also tested.
Results: Patients with STDR had significantly worse TCT despite normal BCVA (p<0.0001). TCT yielded a sensitivity of 100% for detecting diabetic maculopathy and 94% for STDR with a specificity of 95%. Logistic regression analyses showed that TCT (p<0.001) and HbA(1c) (p<0.05) correlated significantly with the presence of STDR but duration of diabetes, urine albumin counts, and BCVA failed to show any significant correlation. No associations between TCT and duration of disease, TCT and HbA(1c), and TCT and urine albumin counts were found.
Conclusion: Tritan colour vision deficiency was observed in patients with STDR despite their normal BCVA. These results indicate that automated TCT assessment is an effective and clinically viable technique for detecting STDR, particularly diabetic maculopathy, before visual loss.
Method: Patients were recruited from a hospital based photographic screening clinic. All subjects underwent best corrected Snellen visual acuity (BCVA) and those with 20/30 vision or worse were excluded. Automated TCT was performed with a computer controlled, cathode ray tube based technique. The system produced a series of sinusoidal, standardised equiluminant chromatic gratings along a tritan confusion axis. Grading of diabetic retinopathy was made by one of the team of experienced ophthalmic registrars (SpR) using slit lamp biomicroscopy and a 78D lens; HbA(1c) and urine albumin were also tested.
Results: Patients with STDR had significantly worse TCT despite normal BCVA (p<0.0001). TCT yielded a sensitivity of 100% for detecting diabetic maculopathy and 94% for STDR with a specificity of 95%. Logistic regression analyses showed that TCT (p<0.001) and HbA(1c) (p<0.05) correlated significantly with the presence of STDR but duration of diabetes, urine albumin counts, and BCVA failed to show any significant correlation. No associations between TCT and duration of disease, TCT and HbA(1c), and TCT and urine albumin counts were found.
Conclusion: Tritan colour vision deficiency was observed in patients with STDR despite their normal BCVA. These results indicate that automated TCT assessment is an effective and clinically viable technique for detecting STDR, particularly diabetic maculopathy, before visual loss.
Original language | English |
---|---|
Pages (from-to) | 747-752 |
Journal | British Journal of Ophthalmology |
Volume | 87 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Jun 2003 |