Automated algorithm for mapping regions of cold-air pooling in complex terrain

J. Lundquist, Nick Pepin

    Research output: Contribution to journalArticlepeer-review


    In complex terrain, air in contact with the ground becomes cooled from radiative energy loss on a calm clear night and, being denser than the free atmosphere at the same elevation, sinks to valley bottoms. Cold-air pooling (CAP) occurs where this cooled air collects on the landscape. This article focuses on identifying locations on a landscape subject to considerably lower minimum temperatures than the regional average during conditions of clear skies and weak synoptic-scale winds, providing a simple automated method to map locations where cold air is likely to pool. Digital elevation models of regions of complex terrain were used to derive surfaces of local slope, curvature, and percentile elevation relative to surrounding terrain. Each pixel was classified as prone to CAP, not prone to CAP, or exhibiting no signal, based on the criterion that CAP occurs in regions with flat slopes in local depressions or valleys (negative curvature and low percentile). Along-valley changes in the topographic amplification factor (TAF) were then calculated to determine whether the cold air in the valley was likely to drain or pool. Results were checked against distributed temperature measurements in Loch Vale, Rocky Mountain National Park, Colorado; in the Eastern Pyrenees, France; and in Yosemite National Park, Sierra Nevada, California. Using CAP classification to interpolate temperatures across complex terrain resulted in improvements in root-mean-square errors compared to more basic interpolation techniques at most sites within the three areas examined, with average error reductions of up to 3°C at individual sites and about 1°C averaged over all sites in the study areas.
    Original languageEnglish
    Pages (from-to)D22107
    JournalJournal of Geophysical Research
    Publication statusPublished - 2008


    Dive into the research topics of 'Automated algorithm for mapping regions of cold-air pooling in complex terrain'. Together they form a unique fingerprint.

    Cite this