TY - JOUR
T1 - Behaviour of palladium(II), platinum(IV), and rhodium(III) in artificial and natural waters: influence of reactor surface and geochemistry on metal recovery
AU - Cobelo-Garcia, A.
AU - Turner, A.
AU - Millward, G.
AU - Couceiro, Fay
PY - 2007
Y1 - 2007
N2 - The recovery of dissolved platinum group elements (PGE: Pd(II), Pt(IV) and Rh(III)) added to Milli-Q® water, artificial freshwater and seawater and filtered natural waters has been studied, as a function of pH and PGE concentration, in containers of varying synthetic composition. The least adsorptive and/or precipitative loss was obtained for borosilicate glass under most of the conditions employed, whereas the greatest loss was obtained for low-density polyethylene. Of the polymeric materials tested, the adsorptive and/or precipitative loss of PGE was lowest for fluorinated ethylene propylene (Teflon®). The loss of Pd(II) in freshwater was significant due to its affinity for surface adsorption and its relatively low solubility. The presence of natural dissolved organic matter increases the recovery of Pd(II) but enhances the loss of Pt(IV). The loss of Rh(III) in seawater was significant and was mainly due to precipitation, whereas Pd(II) recovery was enhanced, compared to freshwater, because of its complexation with chloride. The results have important implications regarding protocols employed for sample preservation and controlled laboratory experiments used in the study of the speciation and biogeochemical behaviour of PGE.
AB - The recovery of dissolved platinum group elements (PGE: Pd(II), Pt(IV) and Rh(III)) added to Milli-Q® water, artificial freshwater and seawater and filtered natural waters has been studied, as a function of pH and PGE concentration, in containers of varying synthetic composition. The least adsorptive and/or precipitative loss was obtained for borosilicate glass under most of the conditions employed, whereas the greatest loss was obtained for low-density polyethylene. Of the polymeric materials tested, the adsorptive and/or precipitative loss of PGE was lowest for fluorinated ethylene propylene (Teflon®). The loss of Pd(II) in freshwater was significant due to its affinity for surface adsorption and its relatively low solubility. The presence of natural dissolved organic matter increases the recovery of Pd(II) but enhances the loss of Pt(IV). The loss of Rh(III) in seawater was significant and was mainly due to precipitation, whereas Pd(II) recovery was enhanced, compared to freshwater, because of its complexation with chloride. The results have important implications regarding protocols employed for sample preservation and controlled laboratory experiments used in the study of the speciation and biogeochemical behaviour of PGE.
U2 - 10.1016/j.aca.2006.12.029
DO - 10.1016/j.aca.2006.12.029
M3 - Article
SN - 0003-2670
VL - 585
SP - 202
EP - 210
JO - Analytica Chimica Acta
JF - Analytica Chimica Acta
IS - 2
ER -