Biofabrication of nanocomposite-based scaffolds containing human bone extracellular matrix for the differentiation of skeletal stem and progenitor cells

Yang-Hee Kim, Janos M. Kanczler, Stuart Lanham, Andrew Rawlings, Marta Roldo, Gianluca Tozzi, Jonathan I. Dawson, Gianluca Cidonio, Richard O. C. Oreffo

Research output: Contribution to journalArticlepeer-review

19 Downloads (Pure)


Autograft or metal implants are routinely used in skeletal repair. However, they fail to provide long-term clinical resolution, necessitating a functional biomimetic tissue engineering alternative. The use of native human bone tissue for synthesizing a biomimetic material ink for three-dimensional (3D) bioprinting of skeletal tissue is an attractive strategy for tissue regeneration. Thus, human bone extracellular matrix (bone-ECM) offers an exciting potential for the development of an appropriate microenvironment for human bone marrow stromal cells (HBMSCs) to proliferate and differentiate along the osteogenic lineage. In this study, we engineered a novel material ink (LAB) by blending human bone-ECM (B) with nanoclay (L, Laponite®) and alginate (A) polymers using extrusion-based deposition. The inclusion of the nanofiller and polymeric material increased the rheology, printability, and drug retention properties and, critically, the preservation of HBMSCs viability upon printing. The composite of human bone-ECM-based 3D constructs containing vascular endothelial growth factor (VEGF) enhanced vascularization after implantation in an ex vivo chick chorioallantoic membrane (CAM) model. The inclusion of bone morphogenetic protein-2 (BMP-2) with the HBMSCs further enhanced vascularization and mineralization after only seven days. This study demonstrates the synergistic combination of nanoclay with biomimetic materials (alginate and bone-ECM) to support the formation of osteogenic tissue both in vitro and ex vivo and offers a promising novel 3D bioprinting approach to personalized skeletal tissue repair.
Original languageEnglish
JournalBio-Design and Manufacturing
Publication statusPublished - 5 Mar 2024


  • Extracellular matrix
  • Nanoclay
  • Bone
  • 3D bioprinting
  • BB/L00609X/1
  • MRC
  • MR/K026682/1
  • MR/R015651/1
  • MR/L012626/1
  • MR/ V00543X/1

Cite this