Abstract
Potent chemotherapeutic agents are required to counteract the aggressive behavior of cancer cells and patients often experience severe side effects, due to tissue toxicity. Our study addresses if a better balance between efficacy and toxicity can be attained using the tumoricidal complex alpha1-oleate, formed by a synthetic, alpha-helical peptide comprising the N-terminal 39 amino acids of alpha-lactalbumin and the fatty acid oleic acid. Bladder cancer was established, by intravesical instillation of MB49 cells on day 0 and the treatment group received five instillations of alpha1-oleate (1.7-17 mM) on days 3 to 11. A dose-dependent reduction in tumor size, bladder size and bladder weight was recorded in the alpha1-oleate treated group, compared to sham-treated mice. Tumor markers Ki-67, Cyclin D1 and VEGF were inhibited in a dose-dependent manner, as was the expression of cancer-related genes. Remarkably, toxicity for healthy tissue was not detected in alpha1-oleate-treated, tumor-bearing mice or healthy mice or rabbits, challenged with increasing doses of the active complex. The results define a dose-dependent therapeutic effect of alpha1-oleate in a murine bladder cancer model.
Original language | English |
---|---|
Pages (from-to) | 2479-2492 |
Journal | International Journal of Cancer |
Volume | 147 |
Issue number | 9 |
Early online date | 11 May 2020 |
DOIs | |
Publication status | Published - 17 Sept 2020 |