TY - JOUR
T1 - CCDM model with spatial curvature and the breaking of "dark degeneracy"
AU - Jesus, J. F.
AU - Andrade-Oliveira, F.
PY - 2016/1/8
Y1 - 2016/1/8
N2 - Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, leads to a negative creation pressure, which can be used to explain the accelerated expansion of the Universe. Recently, it has been shown that the dynamics of expansion of such models can not be distinguished from the concordance ΛCDM model, even at higher orders in the evolution of density perturbations, leading at the so called "dark degeneracy". However, depending on the form of the CDM creation rate, the inclusion of spatial curvature leads to a different behavior of CCDM when compared to ΛCDM, even at background level. With a simple form for the creation rate, namely, Γ∝1/H , we show that this model can be distinguished from ΛCDM, provided the Universe has some amount of spatial curvature. Observationally, however, the current limits on spatial flatness from CMB indicate that neither of the models are significantly favored against the other by current data, at least in the background level.
AB - Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, leads to a negative creation pressure, which can be used to explain the accelerated expansion of the Universe. Recently, it has been shown that the dynamics of expansion of such models can not be distinguished from the concordance ΛCDM model, even at higher orders in the evolution of density perturbations, leading at the so called "dark degeneracy". However, depending on the form of the CDM creation rate, the inclusion of spatial curvature leads to a different behavior of CCDM when compared to ΛCDM, even at background level. With a simple form for the creation rate, namely, Γ∝1/H , we show that this model can be distinguished from ΛCDM, provided the Universe has some amount of spatial curvature. Observationally, however, the current limits on spatial flatness from CMB indicate that neither of the models are significantly favored against the other by current data, at least in the background level.
KW - dark energy theory
KW - dark matter theory
UR - http://www.scopus.com/inward/record.url?scp=84956608643&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2016/01/014
DO - 10.1088/1475-7516/2016/01/014
M3 - Article
AN - SCOPUS:84956608643
SN - 1475-7516
VL - 2016
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 1
M1 - 014
ER -