TY - JOUR
T1 - Changes in adipocyte cell size, gene expression of lipid metabolism markers, and lipolytic responses induced by dietary fish oil replacement in gilthead sea bream (Sparus aurata L.)
AU - Cruz-Garcia, Lourdes
AU - Sanchez-Gurmaches, Joan
AU - Bouraoui, Lamia
AU - Saera-Vila, Alfonso
AU - Perez-Sanchez, Jaume
AU - Gutiérrez, Joaquim
AU - Navarro, Isabel
PY - 2011/4/1
Y1 - 2011/4/1
N2 - The effects of fish oil (FO) substitution by 66% vegetable oils in a diet with already 75% vegetable protein (66VO) on adipose tissue lipid metabolism of gilthead sea bream were analysed after a 14-month feeding trial. In the last 3 months of the experiment, a FO diet was administrated to a 66VO group (group 66VO/FO) as a finishing diet. Hormone-sensitive lipase (HSL) activity was measured in adipose tissue and adipocyte size, and HSL, lipoprotein lipase and liver X receptor gene expression in isolated adipocytes, on which lipolysis and glucose uptake experiments were also performed. Lipolysis was measured after incubation with tumour necrosis factor-α (TNFα), linoleic acid, and two conjugated linoleic acid isomers. Glucose uptake was analysed after TNFα or insulin administration. Our results show that FO replacement increased lipolytic activity and adipocyte cell size. The higher proportion of large cells observed in the 66VO group could be involved in their observed lower response to fatty acid treatments and lower insulin sensitivity. The 66VO/FO group showed a moderate return to the FO conditions. Therefore, FO replacement can affect the morphology and metabolism of gilthead sea bream adipocytes which could potentially affect other organs such as the liver.
AB - The effects of fish oil (FO) substitution by 66% vegetable oils in a diet with already 75% vegetable protein (66VO) on adipose tissue lipid metabolism of gilthead sea bream were analysed after a 14-month feeding trial. In the last 3 months of the experiment, a FO diet was administrated to a 66VO group (group 66VO/FO) as a finishing diet. Hormone-sensitive lipase (HSL) activity was measured in adipose tissue and adipocyte size, and HSL, lipoprotein lipase and liver X receptor gene expression in isolated adipocytes, on which lipolysis and glucose uptake experiments were also performed. Lipolysis was measured after incubation with tumour necrosis factor-α (TNFα), linoleic acid, and two conjugated linoleic acid isomers. Glucose uptake was analysed after TNFα or insulin administration. Our results show that FO replacement increased lipolytic activity and adipocyte cell size. The higher proportion of large cells observed in the 66VO group could be involved in their observed lower response to fatty acid treatments and lower insulin sensitivity. The 66VO/FO group showed a moderate return to the FO conditions. Therefore, FO replacement can affect the morphology and metabolism of gilthead sea bream adipocytes which could potentially affect other organs such as the liver.
U2 - 10.1016/j.cbpa.2010.11.024
DO - 10.1016/j.cbpa.2010.11.024
M3 - Article
SN - 1095-6433
VL - 158
SP - 391
EP - 399
JO - Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology
JF - Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology
IS - 4
ER -