TY - JOUR
T1 - Changes in point and diffuse source phosphorus inputs to the River Frome (Dorset, UK) from 1966 to 2006
AU - Bowes, Michael J.
AU - Smith, Jim
AU - Jarvie, Helen P.
AU - Neal, Colin
AU - Barden, Ruth
PY - 2009/3
Y1 - 2009/3
N2 - Changes in the relationship between soluble reactive phosphorus (SRP) concentration and river flow between 1966 and 2006 were assessed for the River Frome, UK using the recently developed Load Apportionment Model. The resulting source load estimates gave good agreement with known changes within the catchment. The model indicated an increase in point source contribution to the total river load from 46% to 62% between 1970 and 1985. This corresponded with the population increase within the catchment during that time. The predicted mean SRP load was highest between 1996 and 2000 (30 t y− 1), with 49% coming from point sources. Despite no lowering in population or major changes in agricultural practice, the model predicted a reduced load of 18.1 t y− 1 for the period 2001 to 2005, due mainly to a decrease in point source inputs from 14.6 t y− 1 to 6.1 t y− 1 (equivalent to 34% of the total load). This prediction matches the major improvements in sewage treatment that occurred within the catchment in 2002. This study thus provides a major validation of the Load Apportionment Model. The model provides an effective and rapid method of determining past changes in phosphorus sources, based entirely on the P concentration – flow relationship: critically, it does not require any historical information on land use, fertiliser application rates, topography, soil types and sewage inputs. Further decreases in SRP concentration in the River Frome during the algal growing season would be best achieved by further reductions of STW inputs.
AB - Changes in the relationship between soluble reactive phosphorus (SRP) concentration and river flow between 1966 and 2006 were assessed for the River Frome, UK using the recently developed Load Apportionment Model. The resulting source load estimates gave good agreement with known changes within the catchment. The model indicated an increase in point source contribution to the total river load from 46% to 62% between 1970 and 1985. This corresponded with the population increase within the catchment during that time. The predicted mean SRP load was highest between 1996 and 2000 (30 t y− 1), with 49% coming from point sources. Despite no lowering in population or major changes in agricultural practice, the model predicted a reduced load of 18.1 t y− 1 for the period 2001 to 2005, due mainly to a decrease in point source inputs from 14.6 t y− 1 to 6.1 t y− 1 (equivalent to 34% of the total load). This prediction matches the major improvements in sewage treatment that occurred within the catchment in 2002. This study thus provides a major validation of the Load Apportionment Model. The model provides an effective and rapid method of determining past changes in phosphorus sources, based entirely on the P concentration – flow relationship: critically, it does not require any historical information on land use, fertiliser application rates, topography, soil types and sewage inputs. Further decreases in SRP concentration in the River Frome during the algal growing season would be best achieved by further reductions of STW inputs.
U2 - 10.1016/j.scitotenv.2008.11.026
DO - 10.1016/j.scitotenv.2008.11.026
M3 - Article
SN - 0048-9697
VL - 407
SP - 1954
EP - 1966
JO - Science of the Total Environment
JF - Science of the Total Environment
IS - 6
ER -