TY - JOUR
T1 - Clustering analyses of 300,000 photometrically classified quasars. I. luminosity and redshift evolution in quasar bias
AU - Myers, Adam D.
AU - Brunner, Robert J.
AU - Nichol, Robert C.
AU - Richards, Gordon T.
AU - Schneider, Donald P.
AU - Bahcall, Neta A.
PY - 2007/3/20
Y1 - 2007/3/20
N2 - Using 300,000 photometrically classified quasars, by far the largest quasar sample ever used for such analyses,we study the redshift and luminosity evolution of quasar clustering on scales of 50 h-1 kpc to 20 h-1 Mpc from redshifts of z̅ 0:75-2:28. We parameterize our clustering amplitudes using realistic dark matter models and find that a ΛCDM power spectrum provides a superb fit to our data with a redshift-averaged quasar bias of bz̅ =1:40Q = 2:41±0:08 (P2 = 0:847) for σ8 = 0:9. This represents a better fit than the best-fit power-law model [ω = (0:0493 ±0:0064) θ0:928±0:055; P2 = 0:482]. We find bQ increases with redshift. This evolution is significant at >99.6%using our data set alone, increasing to >99.9999% if stellar contamination is not explicitly parameterized. We measure the quasar classification efficiency across our full sample as a = 95:6 ± 4:41:9 %, a star-quasar separation comparable to the star-galaxy separation in many photometric studies of galaxy clustering.We derive the mean mass of the dark matter halos hosting quasars as MDMH = (5:2 ± 0:6) x 1012 h-1 M⊙. At z̅ ∼ 1:9 we find a 1.5 σ deviation from luminosity independent quasar clustering; this suggests that increasing our sample size by a factor of ∼1.8 could begin to constrain any luminosity dependence in quasar bias at z ∼ 2. Our results agree with recent studies of quasar environments at z < 0:4, which detected little luminosity dependence to quasar clustering on proper scales ≳50 h-1 kpc. At z < 1:6,our analysis suggests that bQ is constant with luminosity to within ΔbQ ∼ 0:6, and that, for g < 21, angular quasar autocorrelation measurements are unlikely to have sufficient statistical power at z ≲ 1:6 to detect any luminosity dependence in quasars’ clustering.
AB - Using 300,000 photometrically classified quasars, by far the largest quasar sample ever used for such analyses,we study the redshift and luminosity evolution of quasar clustering on scales of 50 h-1 kpc to 20 h-1 Mpc from redshifts of z̅ 0:75-2:28. We parameterize our clustering amplitudes using realistic dark matter models and find that a ΛCDM power spectrum provides a superb fit to our data with a redshift-averaged quasar bias of bz̅ =1:40Q = 2:41±0:08 (P2 = 0:847) for σ8 = 0:9. This represents a better fit than the best-fit power-law model [ω = (0:0493 ±0:0064) θ0:928±0:055; P2 = 0:482]. We find bQ increases with redshift. This evolution is significant at >99.6%using our data set alone, increasing to >99.9999% if stellar contamination is not explicitly parameterized. We measure the quasar classification efficiency across our full sample as a = 95:6 ± 4:41:9 %, a star-quasar separation comparable to the star-galaxy separation in many photometric studies of galaxy clustering.We derive the mean mass of the dark matter halos hosting quasars as MDMH = (5:2 ± 0:6) x 1012 h-1 M⊙. At z̅ ∼ 1:9 we find a 1.5 σ deviation from luminosity independent quasar clustering; this suggests that increasing our sample size by a factor of ∼1.8 could begin to constrain any luminosity dependence in quasar bias at z ∼ 2. Our results agree with recent studies of quasar environments at z < 0:4, which detected little luminosity dependence to quasar clustering on proper scales ≳50 h-1 kpc. At z < 1:6,our analysis suggests that bQ is constant with luminosity to within ΔbQ ∼ 0:6, and that, for g < 21, angular quasar autocorrelation measurements are unlikely to have sufficient statistical power at z ≲ 1:6 to detect any luminosity dependence in quasars’ clustering.
U2 - 10.1086/511519
DO - 10.1086/511519
M3 - Article
SN - 0004-637X
VL - 658
SP - 85
EP - 98
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 1
ER -