Collaborative rule generation: an ensemble learning approach

Research output: Contribution to journalArticlepeer-review

109 Downloads (Pure)

Abstract

Due to the vast and rapid increase in data, data mining has become an increasingly important tool for the purpose of knowledge discovery in order to prevent the presence of rich data but poor knowledge. Data mining tasks can be undertaken in two ways, namely, manual walkthrough of data and use of machine learning approaches. Due to the presence of big data, machine learning has thus become a powerful tool to do data mining in intelligent ways. A popular approach of machine learning is inductive learning, which can be used to generate a rule set (a set of rules) using a particular algorithm. Inductive learning can involve a single base algorithm learning from a single data set following a standard learning approach. In this approach, the
learning algorithm can generate a single rule set such as decision trees. On the other hand, the inductive learning can also involve a single base algorithm learning from multiple data sets following an ensemble learning approach. In this approach, the learning algorithm can generate multiple rule sets such as random forests. The latter approach is usually designed to reduce overfitting
of models that usually arises when the former approach is adopted. In this context, the ensemble learning approach usually enables the improvement of the overall accuracy in prediction. The aim of this paper is to introduce a new approach of ensemble learning called Collaborative Rule Generation. In the new approach, the inductive learning involves multiple base algorithms learning from a single data set to generate a single rule set, which aims to enable each rule to have a higher quality. This paper also includes an experimental study validating the Collaborative Rule Generation approach and discusses the results in both quantitative and qualitative ways.
Original languageEnglish
Pages (from-to)2277-2287
Number of pages11
JournalJournal of Intelligent & Fuzzy Systems
Volume30
Issue number4
DOIs
Publication statusPublished - 10 Mar 2016

Keywords

  • Data Mining
  • Machine Learning
  • Ensemble Learning
  • Rule Based Systems
  • Rule Based Classification
  • If-Then Rules

Fingerprint

Dive into the research topics of 'Collaborative rule generation: an ensemble learning approach'. Together they form a unique fingerprint.

Cite this