Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion

Keiron Roberts, Sonia Heaven, Charles J. Banks

Research output: Contribution to journalArticlepeer-review

171 Downloads (Pure)

Abstract

Although digestion of micro-algal biomass was first suggested in the 1950s, there is still only limited information available for assessment of its potential. The research examined six laboratory-grown marine and freshwater micro-algae and two samples from large-scale cultivation systems. Biomass composition was characterised to allow prediction of potentially available energy using the Buswell equation, with calorific values as a benchmark for energy recovery. Biochemical methane potential tests were analysed using a pseudo-parallel first order model to estimate kinetic coefficients and proportions of readily-biodegradable carbon. Chemical composition was used to assess potential interferences from nitrogen and sulphur components. Volatile solids (VS) conversion to methane showed a broad range, from 0.161 to 0.435 L CH4 g−1 VS; while conversion of calorific value ranged from 26.4 to 79.2%. Methane productivity of laboratory-grown species was estimated from growth rate, measured by changes in optical density in batch culture, and biomass yield based on an assumed harvested solids content. Volumetric productivity was 0.04–0.08 L CH4 L−1 culture day−1, the highest from the marine species Thalassiosira pseudonana. Estimated methane productivity of the large-scale raceway was lower at 0.01 L CH4 L−1 day−1. The approach used offers a means of screening for methane productivity per unit of cultivation under standard conditions.

Original languageEnglish
Pages (from-to)744-753
Number of pages10
JournalRenewable Energy
Volume87
Issue numberPart 1
Early online date14 Nov 2015
DOIs
Publication statusPublished - 1 Mar 2016

Keywords

  • RCUK
  • EPSRC
  • EU FP7 ALL-GAS (268208)
  • ECOFUEL (246772)

Fingerprint

Dive into the research topics of 'Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion'. Together they form a unique fingerprint.

Cite this