@article{4fc1a685aa1a4a4ab30f3167a76a1d70,
title = "Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion",
abstract = "Although digestion of micro-algal biomass was first suggested in the 1950s, there is still only limited information available for assessment of its potential. The research examined six laboratory-grown marine and freshwater micro-algae and two samples from large-scale cultivation systems. Biomass composition was characterised to allow prediction of potentially available energy using the Buswell equation, with calorific values as a benchmark for energy recovery. Biochemical methane potential tests were analysed using a pseudo-parallel first order model to estimate kinetic coefficients and proportions of readily-biodegradable carbon. Chemical composition was used to assess potential interferences from nitrogen and sulphur components. Volatile solids (VS) conversion to methane showed a broad range, from 0.161 to 0.435 L CH4 g−1 VS; while conversion of calorific value ranged from 26.4 to 79.2%. Methane productivity of laboratory-grown species was estimated from growth rate, measured by changes in optical density in batch culture, and biomass yield based on an assumed harvested solids content. Volumetric productivity was 0.04–0.08 L CH4 L−1 culture day−1, the highest from the marine species Thalassiosira pseudonana. Estimated methane productivity of the large-scale raceway was lower at 0.01 L CH4 L−1 day−1. The approach used offers a means of screening for methane productivity per unit of cultivation under standard conditions.",
keywords = "RCUK, EPSRC, EU FP7 ALL-GAS (268208), ECOFUEL (246772)",
author = "Keiron Roberts and Sonia Heaven and Banks, {Charles J.}",
year = "2016",
month = mar,
day = "1",
doi = "10.1016/j.renene.2015.11.009",
language = "English",
volume = "87",
pages = "744--753",
journal = "Renewable Energy",
issn = "0960-1481",
publisher = "Elsevier BV",
number = "Part 1",
}