Abstract
This study presents a comparative analysis of carbon fiber reinforced polymer (CFRP) composites manufactured through vacuum assisted resin infusion (VARI) using a traditional epoxy resin (E), a fully-recyclable epoxy resin system with (BBR10) and without (BBR) the addition of a reactive diluent (R*Diluent). Various mechanical and thermal tests were conducted to assess their performance. The BBR10 laminate, incorporating 10 wt% R*Diluent, exhibited competitive mechanical performance, comparable to traditional (E) and fully-recyclable laminates (BBR). Despite a slightly lower ultimate tensile strength (UTS) compared with BBR, BBR10 demonstrated improved flexural strength and modulus. Low-velocity impact testing confirmed comparable strength between VARI-produced composites with the recyclable matrix (BBR and BBR10) and the traditional one (E). X-ray mCT investigations revealed distinct void arrangements in the CFRP laminates. Additionally, a chemical approach was employed for recovering high fractions of fibers from CFRP laminates with a recyclable matrix (BBR and BBR10). Chemical recycling achieved an almost 100% yield for long carbon fibers. Highlights: Comparative analysis of CFRP composites manufactured through VARI. Diluent addition allowed to tailor the recyclable epoxy viscosity. Mechanical characterization of traditional and fully recyclable epoxy resins. Investigation by X-ray mCT of potential flaws and manufacturing defects. Chemical recycling of CFRP laminates with a recyclable matrix.
Original language | English |
---|---|
Journal | Polymer Composites |
Early online date | 30 Jul 2024 |
DOIs | |
Publication status | Early online - 30 Jul 2024 |
Keywords
- composites
- epoxy blends
- recycling
- vacuum assisted resin infusion