Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

Lukasz Figiel, F. Dunne, C. Buckley

    Research output: Contribution to journalArticlepeer-review

    Abstract

    This paper addresses the development of a holistic nonlinear computational (FE-based) framework and tools for predicting large deformations of layered-silicate/PET nanocomposites near the glass transition. The framework combines together a nonlinear, rate- and temperature-dependent elastoviscoplastic constitutive model for the polymer matrix, Monte-Carlo based morphology reconstruction tools and nonlinear computational homogenization. The modelling framework can predict the large deformation behaviour of polymer nanocomposites in the processing regime. As a result, it can assist in the optimization of processing conditions for polymer nanocomposites to enhance their mechanical and physical performance. This work was part of the research, which was awarded the Composite Award 2009 from the Institute of Materials, Minerals and Mining (IOM3).
    Original languageEnglish
    Pages (from-to)015001
    Number of pages1
    JournalModelling and Simulation in Materials Science and Engineering
    Volume18
    Issue number1
    DOIs
    Publication statusPublished - 2010

    Fingerprint

    Dive into the research topics of 'Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition'. Together they form a unique fingerprint.

    Cite this