Concomitant taurine exposure counteracts ethanol-induced changes in locomotor and anxiety-like responses in zebrafish

Barbara D. Fontana, Tamie Duarte, Talise E. Müller, Julia Canzian, Paola R. Ziani, Nathana J. Mezzomo, Matthew O. Parker, Denis B. Rosemberg

Research output: Contribution to journalArticlepeer-review

112 Downloads (Pure)


Taurine (TAU) is a β-amino sulfonic acid with pleiotropic roles in the brain, including the neuromodulatory activity via GABAergic and glycinergic agonism. This molecule is found at high concentrations in energy drinks and is often mixed with alcohol in beverages. Although TAU has a neuroprotective role in the brain, the putative risks of mixing TAU and EtOH are not fully understood. Here, we investigated whether TAU modulates locomotor and anxiety-like behavior in adult zebrafish by using the novel tank and light-dark tests following acute EtOH exposure at anxiogenic and anxiolytic concentrations. Zebrafish were individually exposed to water (control), TAU (42, 150, and 400 mg/L), and EtOH (0.25% (v/v) and 1% (v/v)) both independently and cotreated for 1 h. EtOH 0.25% and TAU produced U-shape anxiolytic-like behavior in the light-dark test, TAU 42 and 400 positively modulated EtOH effects, and TAU 150 exerted a protective effect. All TAU concentrations counteracted EtOH 1%-induced locomotion impairment, as well as the anxiogenic-like behavior. Finally, all TAU concentrations when given independently or cotreated with EtOH 0.25% and 1% decreased the risk assessment of the lit compartment. Principal component analyses revealed that exploration and anxiety-like responses were the main behaviors that contribute to the effects of TAU and EtOH. Overall, we demonstrate that TAU differently modulates EtOH-induced anxiolytic- and anxiogenic-like behaviors depending on the concentration, suggesting a complex mechanism underlying TAU and EtOH interactions.
Original languageEnglish
Early online date30 Nov 2019
Publication statusEarly online - 30 Nov 2019


Dive into the research topics of 'Concomitant taurine exposure counteracts ethanol-induced changes in locomotor and anxiety-like responses in zebrafish'. Together they form a unique fingerprint.

Cite this