Abstract
With the high-precision data from current and upcoming experiments, it becomes increasingly important to perform consistency tests of the standard cosmological model. In this work, we focus on consistency measures between different data sets and methods that allow us to assess the goodness of fit of different models. We address both of these questions using the relative entropy or Kullback-Leibler (KL) divergence [1]. First, we revisit the relative entropy as a consistency measure between data sets and further investigate some of its key properties, such as asymmetry and path dependence. We then introduce a novel model rejection framework, which is based on the relative entropy and the posterior predictive distribution. We validate the method on several toy models and apply it to Type Ia supernovae data from the JLA and CMB constraints from Planck 2015, testing the consistency of the data with six different cosmological models.
Original language | English |
---|---|
Article number | 011 |
Journal | Journal of Cosmology and Astroparticle Physics |
Volume | 2019 |
Issue number | 1 |
DOIs | |
Publication status | Published - 3 Jan 2019 |
Keywords
- Cosmological parameters from CMBR
- Supernova type Ia-standard candles
Fingerprint
Dive into the research topics of 'Consistency tests in cosmology using relative entropy'. Together they form a unique fingerprint.Datasets
-
Data availability statement for 'Consistency tests in cosmology using relative entropy'.
Nicola, A. (Creator), Amara, A. (Creator) & Refregier, A. (Creator), IOP Publishing, 3 Jan 2019
Dataset