Abstract
We investigate using three-point statistics in constraining the galaxy-halo connection. We show that for some galaxy samples, the constraints on the halo occupation distribution parameters are dominated by the three-point function signal (over its two-point counterpart). We demonstrate this on mock catalogues corresponding to the Luminous red galaxies (LRGs), Emission-line galaxies (ELGs), and quasars (QSOs) targeted by the Dark Energy Spectroscopic Instrument (DESI) Survey. The projected three-point function for triangle sides less up to 20 h-1 Mpc measured from a cubic Gpc of data can constrain the characteristic minimum mass of the LRGs with a preci sion of 0.46 per cent. For comparison, similar constraints from the projected two-point function are 1.55 per cent. The improvements for the ELGs and QSOs targets are more modest. In the case of the QSOs, it is caused by the high shot-noise of the sample, and in the case of the ELGs, it is caused by the range of halo masses of the host haloes. The most time-consuming part of our pipeline is the measurement of the three-point functions. We adopt a tabulation method, proposed in earlier works for the two-point function, to significantly reduce the required compute time for the three-point analysis.
Original language | English |
---|---|
Pages (from-to) | 6133-6150 |
Number of pages | 18 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 515 |
Issue number | 4 |
Early online date | 23 Aug 2022 |
DOIs | |
Publication status | Published - 1 Oct 2022 |
Keywords
- cosmology: theory
- galaxies: haloes
- large-scale structure of Universe
- UKRI
- STFC