Constraints on the Hubble constant from Supernova Refsdal's reappearance

Patrick L. Kelly*, Steven Rodney, Tommaso Treu, Masamune Oguri, Wenlei Chen, Adi Zitrin, Simon Birrer, Vivien Bonvin, Luc Dessart, Jose M. Diego, Alexei V. Filippenko, Ryan J. Foley, Daniel Gilman, Jens Hjorth, Mathilde Jauzac, Kaisey Mandel, Martin Millon, Justin Pierel, Keren Sharon, Stephen ThorpLiliya Williams, Tom Broadhurst, Alan Dressler, Or Graur, Saurabh Jha, Curtis McCully, Marc Postman, Kasper Borello Schmidt, Brad E. Tucker, Anja von der Linden

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Downloads (Pure)


The gravitationally lensed Supernova Refsdal appeared in multiple images, produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we infer H0 = 64.8 +4.4-4.3 km / s / Mpc, where Mpc is the megaparsec. Using the two models most consistent with the observations, we find H0 = 66.6 +4.1-3.3 km / s / Mpc. The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster.
Original languageEnglish
Article numberabh1322
Issue number6649
Early online date11 May 2023
Publication statusPublished - 9 Jun 2023


  • astro-ph.CO
  • UKRI
  • STFC
  • MRC
  • MR/S017216/1

Cite this