Abstract
In a series of recent papers, a new covariant formalism was introduced to treat inhomogeneities in any spacetime. The variables introduced in these papers are gauge-invariant with respect to a Robertson-Walker background spacetime because they vanish identically in such models, and they have a transparent physical meaning. Exact evolution equations were found for these variables, and the linearized form of these equations were obtained, showing that they give the standard results for a barotropic perfect fluid. In this paper we extend this formalism to the general case of multicomponent fluid sources with interactions between them. We show, using the tilted formalism of King & Ellis, that choosing either the energy frame or the particle frame gives rise to a set of physically well-defined covariant and gauge-invariant variables which describe density and velocity perturbations, both for the total fluid and its constituent components. We then derive a complete set of equations for these variables and show, through harmonic analysis, that they are equivalent to those of Bardeen and of Kodama and Sasaki. We discuss a number of interesting applications, including the case where the universe is filled with a mixture of baryons and radiation, coupled through Thomson scattering, and we derive solutions for the density and velocity perturbations in the large-scale limit. We also correct a number of errors in the previous literature.
Original language | English |
---|---|
Pages (from-to) | 54-74 |
Number of pages | 21 |
Journal | Astrophysical Journal |
Volume | 395 |
Issue number | 1 |
DOIs | |
Publication status | Published - 10 Aug 1992 |
Keywords
- cosmology: theory
- galaxies: formation
- hydrodynamics
- relativity