TY - JOUR
T1 - Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling
AU - Watson, Jane L.
AU - Greenshields, Anna
AU - Hill, Richard
AU - Hilchie, Ashley
AU - Lee, Patrick W.
AU - Giacomantonio, Carman A.
AU - Hoskin, David W.
PY - 2009/12/18
Y1 - 2009/12/18
N2 - New cytotoxic agents are urgently needed for the treatment of advanced ovarian cancer because of the poor long-term response of this disease to conventional chemotherapy. Curcumin, obtained from the rhizome of Curcuma longa, has potent anticancer activity; however, the mechanism of curcumin-induced cytotoxicity in ovarian cancer cells remains a mystery. In this study we show that curcumin exhibited time- and dose-dependent cytotoxicity against monolayer cultures of ovarian carcinoma cell lines with differing p53 status (wild-type p53: HEY, OVCA429; mutant p53: OCC1; null p53: SKOV3). In addition, p53 knockdown or p53 inhibition did not diminish curcumin killing of HEY cells, confirming p53-independent cytotoxicity. Curcumin also killed OVCA429, and SKOV3 cells grown as multicellular spheroids. Nuclear condensation and fragmentation, as well as DNA fragmentation and poly (ADP-ribose) polymerase-1 cleavage in curcumin-treated HEY cells, indicated cell death by apoptosis. Procaspase-3, procaspase-8, and procaspase-9 cleavage, in addition to cytochrome c release and Bid cleavage into truncated Bid, revealed that curcumin activated both the extrinsic and intrinsic pathways of apoptosis. Bax expression was unchanged but Bcl-2, survivin, phosphorylated Akt (on serine 473), and total Akt were downregulated in curcumin-treated HEY cells. Curcumin also activated p38 mitogen-activated protein kinase (MAPK) without altering extracellular signal-regulated kinase 1/2 activity. We conclude that p53-independent curcumin-induced apoptosis in ovarian carcinoma cells involves p38 MAPK activation, ablation of prosurvival Akt signaling, and reduced expression of the antiapoptotic proteins Bcl-2 and survivin. These data provide a mechanistic rationale for the potential use of curcumin in the treatment of ovarian cancer.
AB - New cytotoxic agents are urgently needed for the treatment of advanced ovarian cancer because of the poor long-term response of this disease to conventional chemotherapy. Curcumin, obtained from the rhizome of Curcuma longa, has potent anticancer activity; however, the mechanism of curcumin-induced cytotoxicity in ovarian cancer cells remains a mystery. In this study we show that curcumin exhibited time- and dose-dependent cytotoxicity against monolayer cultures of ovarian carcinoma cell lines with differing p53 status (wild-type p53: HEY, OVCA429; mutant p53: OCC1; null p53: SKOV3). In addition, p53 knockdown or p53 inhibition did not diminish curcumin killing of HEY cells, confirming p53-independent cytotoxicity. Curcumin also killed OVCA429, and SKOV3 cells grown as multicellular spheroids. Nuclear condensation and fragmentation, as well as DNA fragmentation and poly (ADP-ribose) polymerase-1 cleavage in curcumin-treated HEY cells, indicated cell death by apoptosis. Procaspase-3, procaspase-8, and procaspase-9 cleavage, in addition to cytochrome c release and Bid cleavage into truncated Bid, revealed that curcumin activated both the extrinsic and intrinsic pathways of apoptosis. Bax expression was unchanged but Bcl-2, survivin, phosphorylated Akt (on serine 473), and total Akt were downregulated in curcumin-treated HEY cells. Curcumin also activated p38 mitogen-activated protein kinase (MAPK) without altering extracellular signal-regulated kinase 1/2 activity. We conclude that p53-independent curcumin-induced apoptosis in ovarian carcinoma cells involves p38 MAPK activation, ablation of prosurvival Akt signaling, and reduced expression of the antiapoptotic proteins Bcl-2 and survivin. These data provide a mechanistic rationale for the potential use of curcumin in the treatment of ovarian cancer.
KW - ovarian cancer
KW - curcumin
KW - apoptosis
U2 - 10.1002/mc.20571
DO - 10.1002/mc.20571
M3 - Article
SN - 0899-1987
VL - 49
SP - 13
EP - 24
JO - Molecular Carcinogenesis
JF - Molecular Carcinogenesis
IS - 1
ER -