Deformation-controlled design of metallic nanocomposites

Hakan Yavas, Alberto Fraile, Teodor Huminiuc, Huseyin Sener Sen, Emilio Frutos, Tomas Polcar*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Achieving the theoretical strength of a metallic alloy material is a demanding task that usually requires utilizing one or more of the well-established routes: (1) Decreasing the grain size to stop or slow down the dislocation mobility, (2) adding external barriers to dislocation pathways, (3) altering the crystal structure, or (4) combining two of the previous discrete strategies, that is, implementing crystal seeds into an amorphous matrix. Each of the outlined methods has clear limitations; hence, further improvements are required. We present a unique approach that envelops all the different strength-building strategies together with a new phenomenon-phase transition. We simulated the plastic deformation of a Zr-Nb nanolayered alloy using molecular dynamics and ab initio methods and observed the transition of Zr from hexagonal close-packed to face-centered cubic and then to body-cenetered cubic during compression. The alloy, which was prepared by magnetron sputtering, exhibited near-theoretical hardness (10.8 GPa) and the predicted transition of the Zr structure was confirmed. Therefore, we have identified a new route for improving the hardness of metallic alloys.

Original languageEnglish
Pages (from-to)46296-46302
Number of pages7
JournalACS Applied Materials and Interfaces
Volume11
Issue number49
Early online date15 Nov 2019
DOIs
Publication statusPublished - 11 Dec 2019

Keywords

  • coating
  • interfaces
  • metallic alloy
  • nanolayered materials
  • phase transition
  • UKRI
  • EPSRC
  • EP/K040375/1

Fingerprint

Dive into the research topics of 'Deformation-controlled design of metallic nanocomposites'. Together they form a unique fingerprint.

Cite this