Development of a method to investigate strain distribution across the cartilage-bone interface in guinea pig model of spontaneous osteoarthritis using lab-based contrast enhanced X-ray-computed tomography and digital volume correlation

Research output: Contribution to journalArticlepeer-review

53 Downloads (Pure)

Abstract

Objective: Strain changes at the cartilage-bone interface play a crucial role in osteoarthritis (OA) development. Contrast-Enhanced X-ray Computed Tomography (CECT) and Digital Volume Correlation (DVC) can measure 3D strain changes at the osteochondral interface. Using lab-based CT systems it is often difficult to visualise soft tissues such as articular cartilage without staining to enhance contrast. Contrast-Enhancing Staining Agents (CESAs), such as Phosphotungstic Acid (PTA) in 70% ethanol, can cause tissue shrinkage and alter tissue mechanics. The aims of this study were, firstly, to assess changes to the mechanical properties of osteochondral tissue after staining with a PTA/PBS solution, and secondly, to visualise articular cartilage during loading and with CECT imaging in order to compare strain across the interface in both healthy and OA joints using DVC.

Design: Nanoindentation was used to assess changes to mechanical properties in articular cartilage and subchondral bone before and after staining. Hindlimbs from Dunkin-Hartley guinea pigs were stained with 1% PTA/PBS at room temperature for 6 days. Two consecutive CECT datasets were acquired for DVC error analysis. In-situ compression with a load corresponding to 2x body weight was applied, the specimen was re-imaged, and DVC was performed between the pre- and post-load tomograms.

Results: Nanoindentation before and after PTA/PBS staining showed similar cartilage stiffness (p < 0.05), however, staining significantly decreased the stiffness of subchondral bone (∼9-fold; p = 0.0012). In severe OA specimens, third principal/compressive (εp3) strain was 141.7% higher and shear strain (γ) was 98.2% higher in tibial articular cartilage compared to non-OA (2 – month) specimens. A 23.1% increase in third principal stain strain and a 54.5% significant increase in the shear (γ) strain (p = 0.0027) was transferred into the mineralised regions of calcified cartilage and subchondral bone in severe OA specimens.

Conclusions: These results indicate the suitability of PTA in PBS as a contrast agent for the visualisation of cartilage during CECT imaging and allowed DVC computation of strain across the cartilage-bone interface. However, further research is needed to address the reduction in stiffness of subchondral bone after incubation in PBS.
Original languageEnglish
Article number105999
Number of pages11
JournalJournal of the Mechanical Behavior of Biomedical Materials
Volume144
Early online date29 Jun 2023
DOIs
Publication statusPublished - 1 Aug 2023

Keywords

  • CECT
  • digital volume correlation
  • osteoarthritis
  • osteochondral interface
  • strain

Cite this