Differential localization of GABAA receptor subunits in relation to rat striatopallidal and pallidopallidal synapses

A. Gross, R. Sims, Jerome Swinny, W. Sieghart, J. Bolam, I. Stanford

    Research output: Contribution to journalArticlepeer-review

    Abstract

    As a central integrator of basal ganglia function, the external segment of the globus pallidus (GP) plays a critical role in the control of voluntary movement. The GP is composed of a network of inhibitory GABA-containing projection neurons which receive GABAergic input from axons of the striatum (Str) and local collaterals of GP neurons. Here, using electrophysiological techniques and immunofluorescent labeling we have investigated the differential cellular distribution of α1, α2 and α3 GABAA receptor subunits in relation to striatopallidal (Str-GP) and pallidopallidal (GP-GP) synapses. Electrophysiological investigations showed that zolpidem (100 nm; selective for the α1 subunit) increased the amplitude and the decay time of both Str-GP and GP-GP IPSCs, indicating the presence of the α1 subunits at both synapses. However, the application of drugs selective for the α2, α3 and α5 subunits (zolpidem at 400 nm, L-838,417 and TP003) revealed differential effects on amplitude and decay time of IPSCs, suggesting the nonuniform distribution of non-α1 subunits. Immunofluorescence revealed widespread distribution of the α1 subunit at both soma and dendrites, while double- and triple-immunofluorescent labeling for parvalbumin, enkephalin, gephyrin and the γ2 subunit indicated strong immunoreactivity for GABAAα3 subunits in perisomatic synapses, a region mainly targeted by local axon collaterals. In contrast, immunoreactivity for synaptic GABAAα2 subunits was observed in dendritic compartments where striatal synapses are preferentially located. Due to the kinetic properties which each GABAAα subunit confers, this distribution is likely to contribute differentially to both physiological and pathological patterns of activity.
    Original languageEnglish
    Pages (from-to)868-878
    Number of pages11
    JournalEuropean Journal of Neuroscience
    Volume33
    Issue number5
    DOIs
    Publication statusPublished - 2011

    Fingerprint

    Dive into the research topics of 'Differential localization of GABAA receptor subunits in relation to rat striatopallidal and pallidopallidal synapses'. Together they form a unique fingerprint.

    Cite this