TY - JOUR
T1 - Dispersion of gas flaring emissions in the Niger delta
T2 - Impact of prevailing meteorological conditions and flare characteristics
AU - Fawole, Olusegun G.
AU - Cai, Xiaoming
AU - Abiye, Olawale E.
AU - MacKenzie, A. R.
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2019/3/1
Y1 - 2019/3/1
N2 - An understanding of the dispersion and level of emissions source of atmospheric pollutants; whether point, area or volume sources, is required to inform policies on air pollution and day-to-day predictions of pollution level. Very few studies have carried out simulations of the dispersion pattern and ground-level concentration of pollutants emitted from real-world gas flares. The limited availability of official data on gas flares from the oil and gas industries makes accurate dispersion calculations difficult. Using ADMS 5 and AERMOD, this study assessed the sensitivity of dispersion and ground-level concentration of pollutants from gas flares in the Niger Delta to prevailing meteorological condition; fuel composition; and flare size. Although, during the non-WAM (West African Monsoon) months (November and March), the simulated ground-level concentrations of pollutants from a single flare are lower, the dispersion of pollutants is towards both the inland and coastal communities. In the WAM months, the ground-level concentrations are higher and are dispersed predominantly over the inland communities. Less buoyant plumes from smaller flares (lower volume flow rates) and/or flaring of fuel with lower heat content results in higher ground-level concentrations in areas closer to the flare. Considering the huge number of flares scattered around the region, a mitigation of the acute local pollution level would be to combine short stacks flaring at lower volume flow rates to enhance the volume flow rate of a single exhaust, and hence, the buoyancy of the plume exiting the stack.
AB - An understanding of the dispersion and level of emissions source of atmospheric pollutants; whether point, area or volume sources, is required to inform policies on air pollution and day-to-day predictions of pollution level. Very few studies have carried out simulations of the dispersion pattern and ground-level concentration of pollutants emitted from real-world gas flares. The limited availability of official data on gas flares from the oil and gas industries makes accurate dispersion calculations difficult. Using ADMS 5 and AERMOD, this study assessed the sensitivity of dispersion and ground-level concentration of pollutants from gas flares in the Niger Delta to prevailing meteorological condition; fuel composition; and flare size. Although, during the non-WAM (West African Monsoon) months (November and March), the simulated ground-level concentrations of pollutants from a single flare are lower, the dispersion of pollutants is towards both the inland and coastal communities. In the WAM months, the ground-level concentrations are higher and are dispersed predominantly over the inland communities. Less buoyant plumes from smaller flares (lower volume flow rates) and/or flaring of fuel with lower heat content results in higher ground-level concentrations in areas closer to the flare. Considering the huge number of flares scattered around the region, a mitigation of the acute local pollution level would be to combine short stacks flaring at lower volume flow rates to enhance the volume flow rate of a single exhaust, and hence, the buoyancy of the plume exiting the stack.
UR - http://www.scopus.com/inward/record.url?scp=85059311230&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2018.12.021
DO - 10.1016/j.envpol.2018.12.021
M3 - Article
C2 - 30557802
AN - SCOPUS:85059311230
SN - 0269-7491
VL - 246
SP - 284
EP - 293
JO - Environmental Pollution
JF - Environmental Pollution
ER -