Drug targets for amyloidosis

Research output: Contribution to journalArticlepeer-review


The amyloid hypothesis indicates that protein misfolding is at the root of many neurodegenerative disorders. Small molecules targeting the formation, clearance, aggregation to toxic oligomers or SOD (superoxide dismutase)-like activities of Abeta (amyloid beta-peptide) 1-42 have provided encouraging candidates for AD (Alzheimer's disease) medicines in animal models, although none have yet proved to be effective in human trials. We have been investigating approaches to treat systemic amyloidoses, conditions that show common features with some CNS (central nervous system) disorders. For TTR (transthyretin) amyloidosis, we are seeking small molecule compounds that stabilize the amyloidogenic protein and either prevent its structural transition to the crossed beta fibres deposited in diseased tissues, or promote its clearance from circulation. Effective stabilizer compounds that simultaneously bind to both thyroxine-binding sites have been developed. A more generic approach involves targeting the plasma glycoprotein SAP (serum amyloid P component). This protein recognizes the misfolded polypeptide structures of amyloid deposits wherever they occur, and acts as a powerful anti-opsonin. We have developed a bivalent drug called CPHPC {(R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]-pyrrolidine-2-carboxylic acid} that cross-links pairs of pentameric SAP molecules and causes their rapid elimination from the circulation. This strategy raises the prospect of encouraging natural mechanisms to clear amyloid and recent work suggests that this approach extends to the CNS.
Original languageEnglish
Pages (from-to)466-470
Number of pages5
JournalBiochemical Society Transactions
Issue number2
Publication statusPublished - Apr 2010


Dive into the research topics of 'Drug targets for amyloidosis'. Together they form a unique fingerprint.

Cite this