Abstract
The object of the study was to assess the effect of different finishing and polishing systems on the roughness and gloss of a 3D-printed permanent restorative material. One 3D printable Permanent material was selected for the study. Squared-shaped specimens (14 mm2; 5 mm thickness) were obtained by designing and printing. Eighty specimens were produced and randomly assigned (n = 10) to 8 finishing and polishing methods: Sof-Lex™ Spiral Wheels (SW), Sof-Lex™ XT Pop-on Disc (SD), Identoflex Lucent no paste (Ln), Identoflex Lucent + paste (Lp), Resin Nitrogen polymerized (NG), Optiglaze (OG), Opti1Step (OS), and HiLusterPLUS (HL). Surface roughness and gloss were then measured by a roughness meter and a glossmeter, respectively. For roughness, statistically significant differences were found (p < 0.001), with NG(a) > SD(b) = OG(b) = Lp(b); Lp(b) = Ln(bc); Ln(bc) = OS(cd); OS(cd) = SW(de); and SW(de) = HL(e). For gloss, statistically significant differences were also identified (p < 0.001) with NG(a) > SD(b) > Lp(c) = OS(c) = OG(cd); OG(cd) = Ln(d) > HL(e) = SW(e). The nitrogen chamber polymerization showed better results for both roughness and gloss. Multi-step finishing/polishing systems were able to produce smoother surfaces than 1-step and 2-step systems.
Original language | English |
---|---|
Article number | 7289 |
Number of pages | 12 |
Journal | Applied Sciences |
Volume | 14 |
Issue number | 16 |
DOIs | |
Publication status | Published - 19 Aug 2024 |
Keywords
- 3D printing
- finishing
- polishing
- gloss
- roughness