Effect of different finishing systems on surface roughness and gloss of a 3D-printed material for permanent dental use

Alessandro Vichi, Dario Balestra, Chris Louca

Research output: Contribution to journalArticlepeer-review

3 Downloads (Pure)

Abstract

The object of the study was to assess the effect of different finishing and polishing systems on the roughness and gloss of a 3D-printed permanent restorative material. One 3D printable Permanent material was selected for the study. Squared-shaped specimens (14 mm2; 5 mm thickness) were obtained by designing and printing. Eighty specimens were produced and randomly assigned (n = 10) to 8 finishing and polishing methods: Sof-Lex™ Spiral Wheels (SW), Sof-Lex™ XT Pop-on Disc (SD), Identoflex Lucent no paste (Ln), Identoflex Lucent + paste (Lp), Resin Nitrogen polymerized (NG), Optiglaze (OG), Opti1Step (OS), and HiLusterPLUS (HL). Surface roughness and gloss were then measured by a roughness meter and a glossmeter, respectively. For roughness, statistically significant differences were found (p < 0.001), with NG(a) > SD(b) = OG(b) = Lp(b); Lp(b) = Ln(bc); Ln(bc) = OS(cd); OS(cd) = SW(de); and SW(de) = HL(e). For gloss, statistically significant differences were also identified (p < 0.001) with NG(a) > SD(b) > Lp(c) = OS(c) = OG(cd); OG(cd) = Ln(d) > HL(e) = SW(e). The nitrogen chamber polymerization showed better results for both roughness and gloss. Multi-step finishing/polishing systems were able to produce smoother surfaces than 1-step and 2-step systems.
Original languageEnglish
Article number7289
Number of pages12
JournalApplied Sciences
Volume14
Issue number16
DOIs
Publication statusPublished - 19 Aug 2024

Keywords

  • 3D printing
  • finishing
  • polishing
  • gloss
  • roughness

Cite this