Abstract
Background: The study is the first to evaluate the effects of graded normobaric hypoxia on SpO2 variability in healthy individuals.
Materials and Methods: Twelve healthy males (mean [standard deviation] age 22 [4] years) were exposed to four simulated environments (fraction of inspired oxygen [FIO2]: 0.12, 0.145, 0.17, and 0.21) for 45 minutes, in a balanced crossover design.
Results: Sample entropy, a tool that quantifies the irregularity of pulse oximetry fluctuations, was used as a measure of SpO2 variability. SpO2 entropy increased as the FIO2 decreased, and there was a strong significant negative correlation between mean SpO2 and its entropy during hypoxic exposure (r = −0.841 to −0.896, p < 0.001). In addition, SpO2 sample entropy, but not mean SpO2, was correlated (r = 0.630–0.760, p < 0.05) with dyspnea in FIO2 0.17, 0.145, and 0.12 and importantly, SpO2 sample entropy at FIO2 0.17 was correlated with dyspnea at FIO2 0.145 (r = 0.811, p < 0.01).
Conclusions: These findings suggest that SpO2 variability analysis may have the potential to be used in a clinical setting as a noninvasive measure to identify the negative sequelae of hypoxemia.
Materials and Methods: Twelve healthy males (mean [standard deviation] age 22 [4] years) were exposed to four simulated environments (fraction of inspired oxygen [FIO2]: 0.12, 0.145, 0.17, and 0.21) for 45 minutes, in a balanced crossover design.
Results: Sample entropy, a tool that quantifies the irregularity of pulse oximetry fluctuations, was used as a measure of SpO2 variability. SpO2 entropy increased as the FIO2 decreased, and there was a strong significant negative correlation between mean SpO2 and its entropy during hypoxic exposure (r = −0.841 to −0.896, p < 0.001). In addition, SpO2 sample entropy, but not mean SpO2, was correlated (r = 0.630–0.760, p < 0.05) with dyspnea in FIO2 0.17, 0.145, and 0.12 and importantly, SpO2 sample entropy at FIO2 0.17 was correlated with dyspnea at FIO2 0.145 (r = 0.811, p < 0.01).
Conclusions: These findings suggest that SpO2 variability analysis may have the potential to be used in a clinical setting as a noninvasive measure to identify the negative sequelae of hypoxemia.
Original language | English |
---|---|
Journal | High Altitude Medicine and Biology |
Early online date | 18 Feb 2020 |
DOIs | |
Publication status | Early online - 18 Feb 2020 |
Keywords
- dyspnea
- oxygen saturation
- pulse oximetry
- sample entropy
- Sp02 variability