TY - JOUR
T1 - Eliciting caregiving behaviour in dyadic human-robot attachment-like interactions
AU - Hiolle, A.
AU - Canamero, L.
AU - Davila-Ross, Marina
AU - Bard, Kim
PY - 2012/3
Y1 - 2012/3
N2 - Based on research in developmental robotics and psychology findings in attachment theory in young infants, we designed an arousal-based model controlling the behaviour of a Sony AIBO robot during the exploration of a children play mat. When the robot experiences too many new perceptions, the increase of arousal triggers calls for attention from its human caregiver. The caregiver can choose to either calm the robot down by providing it with comfort, or to leave the robot coping with the situation on its own . When the arousal of the robot has decreased, the robot moves on to further explore the play mat. We present here the results of two experiments using this arousal-driven control architecture. In the first setting, we show that such a robotic architecture allows the human caregiver to influence greatly the learning outcomes of the exploration episode, with some similarities to a primary caregiver during early childhood. In a second experiment, we tested how human adults behaved in a similar setup with two different robots: one needy, often demanding attention, and one more independent, requesting far less care or assistance. Our results show that human adults recognise each profile of the robot for what they have been designed, and behave accordingly to what would be expected, caring more for the needy robot than the other. Additionally, the subjects exhibited a preference and more positive affect whilst interacting and rating the robot we designed as needy. This experiment leads us to the conclusion that our architecture and setup succeeded in eliciting positive and caregiving behaviour from adults of different age groups and technological background. Finally, the consistency and reactivity of the robot during this dyadic interaction appeared crucial for the enjoyment and engagement of the human partner.
AB - Based on research in developmental robotics and psychology findings in attachment theory in young infants, we designed an arousal-based model controlling the behaviour of a Sony AIBO robot during the exploration of a children play mat. When the robot experiences too many new perceptions, the increase of arousal triggers calls for attention from its human caregiver. The caregiver can choose to either calm the robot down by providing it with comfort, or to leave the robot coping with the situation on its own . When the arousal of the robot has decreased, the robot moves on to further explore the play mat. We present here the results of two experiments using this arousal-driven control architecture. In the first setting, we show that such a robotic architecture allows the human caregiver to influence greatly the learning outcomes of the exploration episode, with some similarities to a primary caregiver during early childhood. In a second experiment, we tested how human adults behaved in a similar setup with two different robots: one needy, often demanding attention, and one more independent, requesting far less care or assistance. Our results show that human adults recognise each profile of the robot for what they have been designed, and behave accordingly to what would be expected, caring more for the needy robot than the other. Additionally, the subjects exhibited a preference and more positive affect whilst interacting and rating the robot we designed as needy. This experiment leads us to the conclusion that our architecture and setup succeeded in eliciting positive and caregiving behaviour from adults of different age groups and technological background. Finally, the consistency and reactivity of the robot during this dyadic interaction appeared crucial for the enjoyment and engagement of the human partner.
U2 - 10.1145/2133366.2133369
DO - 10.1145/2133366.2133369
M3 - Article
SN - 2160-6455
VL - 2
SP - 3
JO - ACM Transactions on Interactive Intelligent Systems
JF - ACM Transactions on Interactive Intelligent Systems
IS - 1
ER -