TY - JOUR
T1 - Emergent universe from an unstable de Sitter phase
AU - Burkmar, Molly Louise
AU - Bruni, Marco
PY - 2024/10/16
Y1 - 2024/10/16
N2 - In the Emergent scenario, the Universe should evolve from a nonsingular state replacing the typical singularity of General Relativity, for any initial condition. For the scalar field model by Ellis and Maartens [Class. Quantum Grav. 21 (2003) 223] we show that only a set of measure zero of trajectories leads to emergence, either from a static state (an Einstein model), or from a de Sitter state. Assuming a scenario based on CDM interacting with a Dark Energy fluid, we show that in general flat and open models expand from a nonsingular unstable de Sitter state at high energies; for some closed models this state is a transition phase with a bounce, other closed models are cyclic. A subset of these models are qualitatively in agreement with the observable Universe, accelerating at high energies, going through a matter-dominated decelerated era, then accelerating toward a de Sitter phase.
AB - In the Emergent scenario, the Universe should evolve from a nonsingular state replacing the typical singularity of General Relativity, for any initial condition. For the scalar field model by Ellis and Maartens [Class. Quantum Grav. 21 (2003) 223] we show that only a set of measure zero of trajectories leads to emergence, either from a static state (an Einstein model), or from a de Sitter state. Assuming a scenario based on CDM interacting with a Dark Energy fluid, we show that in general flat and open models expand from a nonsingular unstable de Sitter state at high energies; for some closed models this state is a transition phase with a bounce, other closed models are cyclic. A subset of these models are qualitatively in agreement with the observable Universe, accelerating at high energies, going through a matter-dominated decelerated era, then accelerating toward a de Sitter phase.
UR - https://arxiv.org/abs/2406.04839
U2 - 10.1142/S021827182441013X
DO - 10.1142/S021827182441013X
M3 - Article
SN - 0218-2718
JO - International Journal of Modern Physics D
JF - International Journal of Modern Physics D
ER -