Expanding the ecotoxicological toolbox: the inclusion of polychaete reproductive endpoints

Ceri Lewis, Gordon Watson

    Research output: Contribution to journalArticlepeer-review

    Abstract

    In the last 15 years the diversity of pollutants and routes of impact have increased. However, the polychaete families, species and endpoints investigated have remained fairly constant. Reproductive outputs are more ecologically relevant than adult physiological or biochemical changes. Nevertheless, there remains a paucity of data on the reproductive responses of the popular species to pollutants which limits our ability to understand the true ecological impacts of such contaminants on natural populations. We highlight the current knowledge gaps in our understanding of the impacts of pollutants on the ‘model’ species’ reproductive biology and therefore the potential ecological impacts of such contaminants on their natural populations, and the potential benefits of a wider use of polychaete reproductive endpoints for ecotoxicological assessments. The following priority areas are suggested for inclusion in the polychaete ecotoxicology toolbox: 1. Include reproductive endpoints as assessments of ecotoxicology for the traditional ‘model’ species and those that have different reproductive traits to ensure broad ecological relevance. 2. Nereids and Arenicola marina should be used to investigate the interaction of pollutants with the endocrine/environmental control of reproduction. 3. Polychaetes are ideal for addressing the under representation of male eco-toxicity effects. 4. Emerging pollutants should be assessed with reproductive endpoints together with the traditional biomarkers. 5. Effects of pollutants on larval behaviour need to be explored considering the limited but equivocal results so far.
    Original languageEnglish
    JournalMarine Environmental Research
    DOIs
    Publication statusPublished - 12 Aug 2011

    Fingerprint

    Dive into the research topics of 'Expanding the ecotoxicological toolbox: the inclusion of polychaete reproductive endpoints'. Together they form a unique fingerprint.

    Cite this