Exploring cosmic origins with CORE: mitigation of systematic effects

V. Vennin, CORE Collaboration

Research output: Contribution to journalArticlepeer-review

51 Downloads (Pure)

Abstract

We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.
Original languageEnglish
Article number022
Number of pages51
JournalJournal of Cosmology and Astroparticle Physics
Volume2018
Issue number04
DOIs
Publication statusPublished - 5 Apr 2018

Keywords

  • astro-ph.CO
  • astro-ph.IM
  • CMBR experiments
  • CMBR polarisation
  • gravitational waves and CMBR polarization

Fingerprint

Dive into the research topics of 'Exploring cosmic origins with CORE: mitigation of systematic effects'. Together they form a unique fingerprint.

Cite this