Exposure to low pH induces molecular level changes in the marine worm, Platynereis dumerilii

Janine Wäge, Adelaide Lerebours, Jörg D. Hardege, Jeanette M. Rotchell

Research output: Contribution to journalArticlepeer-review

75 Downloads (Pure)

Abstract

Fossil fuel emissions and changes in net land use lead to an increase in atmospheric CO2 concentration and a subsequent decrease of ocean pH. Noticeable effects on organisms' calcification rate, shell structure and energy metabolism have been reported in the literature. To date, little is known about the molecular mechanisms altered under low pH exposure, especially in non-calcifying organisms. We used a suppression subtractive hybridisation (SSH) approach to characterise differentially expressed genes isolated from Platynereis dumerilii, a non-calcifying marine polychaeta species, kept at normal and low pH conditions. Several gene sequences have been identified as differentially regulated. These are involved in processes previously considered as indicators of environment change, such as energy metabolism (NADH dehydrogenase, 2-oxoglutarate dehydrogenase, cytochrome c oxidase and ATP synthase subunit F), while others are involved in cytoskeleton function (paramyosin and calponin) and immune defence (fucolectin-1 and paneth cell-specific alpha-defensin) processes. This is the first study of differential gene expression in a non-calcifying, marine polychaete exposed to low pH seawater conditions and suggests that mechanisms of impact may include additional pathways not previously identified as impacted by low pH in other species.
Original languageEnglish
Pages (from-to)105-110
JournalEcotoxicology and Environmental Safety
Volume124
Early online date19 Oct 2015
DOIs
Publication statusPublished - 1 Feb 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Exposure to low pH induces molecular level changes in the marine worm, Platynereis dumerilii'. Together they form a unique fingerprint.

Cite this