Face image-sketch synthesis via generative adversarial fusion

Jianyuan Sun, Hongchuan Yu, Jian J Zhang, Junyu Dong, Hui Yu, Guoqiang Zhong

Research output: Contribution to journalArticlepeer-review

Abstract

Face image-sketch synthesis is widely applied in law enforcement and digital entertainment fields. Despite the extensive progression in face image-sketch synthesis, there are few methods focusing on generating a color face image from a sketch. The existing methods pay less attention to learning the illumination or highlight distribution on the face region. However, the illumination is the key factor that makes the generated color face image looks vivid and realistic. Moreover, existing methods tend to employ some image preprocessing technologies and facial region patching approaches to generate high-quality face images, which results in the high complexity and memory consumption in practice. In this paper, we propose a novel end-to-end generative adversarial fusion model, called GAF, which fuses two U-Net generators and a discriminator by jointly learning the content and adversarial loss functions. In particular, we propose a parametric tanh activation function to learn and control illumination highlight distribution over faces, which is integrated between the two U-Net generators by an illumination distribution layer. Additionally, we fuse the attention mechanism into the second U-Net generator of GAF to keep the identity consistency and refine the generated facial details. The qualitative and quantitative experiments on the public benchmark datasets show that the proposed GAF has better performance than existing image-sketch synthesis methods in synthesized face image quality (FSIM) and face recognition accuracy (NLDA). Meanwhile, the good generalization ability of GAF has also been verified. To further demonstrate the reliability and authenticity of face images generated using GAF, we use the generated face image to attack the well-known face recognition system. The result shows that the face images generated by GAF can maintain identity consistency and well maintain everyone's unique facial characteristics, which can be further used in the benchmark of facial spoofing. Moreover, the experiments are implemented to verify the effectiveness and rationality of the proposed parametric tanh activation function and attention mechanism in GAF.

Original languageEnglish
Pages (from-to)179-189
Number of pages11
JournalNeural Networks
Volume154
Early online date26 Jul 2022
DOIs
Publication statusPublished - 1 Oct 2022

Keywords

  • U-net generator
  • illumination distribution layer
  • attention mechanism
  • generated face image

Fingerprint

Dive into the research topics of 'Face image-sketch synthesis via generative adversarial fusion'. Together they form a unique fingerprint.

Cite this