@inproceedings{ee16990039d54622a1436c614cea9962,
title = "Finger pinch force estimation through muscle activations using a surface EMG sleeve on the forearm",
abstract = "For prosthetic hand manipulation, the surface Electromyography(sEMG) has been widely applied. Researchers usually focus on the recognition of hand grasps or gestures, but ignore the hand force, which is equally important for robotic hand control. Therefore, this paper concentrates on the methods of finger forces estimation based on multichannel sEMG signal. A custom-made sEMG sleeve system omitting the stage of muscle positioning is utilised to capture the sEMG signal on the forearm. A mathematic model for muscle activation extraction is established to describe the relationship between finger pinch forces and sEMG signal, where the genetic algorithm is employed to optimise the coefficients. The results of experiments in this paper shows three main contributions: 1) There is a systematical relationship between muscle activations and the pinch finger forces. 2) To estimate the finger force, muscle precise positioning for electrodes placement is not inevitable. 3) In a multi-channel EMG system, selecting specific combinations of several channels can improve the estimation accuracy for specific gestures.",
keywords = "RCUK, EPSRC, EP/G041377/1",
author = "Yinfeng Fang and Zhaojie Ju and Xiangyang Zhu and Honghai Liu",
year = "2014",
month = sep,
day = "8",
doi = "10.1109/FUZZ-IEEE.2014.6891790",
language = "English",
isbn = "978-1-4799-2074-7",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1449--1455",
booktitle = "Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)",
address = "United States",
note = "2014 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2014 ; Conference date: 06-07-2014 Through 11-07-2014",
}