First cosmological results using type Ia supernovae from the Dark Energy Survey: measurement of the Hubble Constant

Dark Energy Survey Collaboration, E. Macaulay, R. C. Nichol, D. Bacon, C. B. D'Andrea, S. Avila, T. Collett, E. Swann, D. Thomas

Research output: Contribution to journalArticlepeer-review

82 Downloads (Pure)

Abstract

We present an improved measurement of the Hubble constant (H0) using the ‘inverse distance ladder’ method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing distance measurements of 122 low-redshift (z < 0.07) SNe Ia (Low-z) and measurements of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements of H0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H0 = 67.8 ± 1.3 km s−1 Mpc−1 (statistical and systematic uncertainties, 68 per cent confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a ΛCDM universe.
Original languageEnglish
Pages (from-to)2184–2196
JournalMonthly Notices of the Royal Astronomical Society
Volume486
Issue number2
Early online date9 Apr 2019
DOIs
Publication statusPublished - 1 Jun 2019

Keywords

  • astro-ph.CO
  • RCUK
  • STFC
  • ST/N000668/1

Fingerprint

Dive into the research topics of 'First cosmological results using type Ia supernovae from the Dark Energy Survey: measurement of the Hubble Constant'. Together they form a unique fingerprint.

Cite this