ForestFlow: predicting the Lyman-α forest clustering from linear to nonlinear scales

J. Chaves-Montero*, L. Cabayol-Garcia, M. Lokken, A. Font-Ribera, J. Aguilar, S. Ahlen, D. Bianchi, D. Brooks, T. Claybaugh, S. Cole, A. de la Macorra, S. Ferraro, J. E. Forero-Romero, E. Gaztañaga, S. A.Gontcho Gontcho, G. Gutierrez, K. Honscheid, R. Kehoe, D. Kirkby, A. KreminA. Lambert, M. Landriau, M. Manera, P. Martini, R. Miquel, A. Muñoz-Gutiérrez, G. Niz, I. Pérez-Ràfols, G. Rossi, E. Sanchez, M. Schubnell, D. Sprayberry, G. Tarlé, B. A. Weaver

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

On large scales, the Lyman-α forest provides insights into the expansion history of the Universe, while on small scales, it imposes strict constraints on the growth history, the nature of dark matter, and the sum of neutrino masses. This work introduces ForestFlow, a novel framework that bridges the gap between large- and small-scale analyses, which have traditionally relied on distinct modeling approaches. Using conditional normalizing flows, ForestFlow predicts the two Lyman-α linear biases (bδ and bη) and six parameters describing small-scale deviations of the three-dimensional flux power spectrum (P3D) from linear theory as a function of cosmology and intergalactic medium physics. These are then combined with a Boltzmann solver to make consistent predictions, from arbitrarily large scales down to the nonlinear regime, for P3D and any other statistics derived from it. Trained on a suite of 30 fixed-and-paired cosmological hydrodynamical simulations spanning redshifts from z = 2 to 4.5, ForestFlow achieves 3 and 1.5% precision in describing P3D and the one-dimensional flux power spectrum (P1D) from linear scales to k = 5 Mpc−1 and kk = 4 Mpc−1, respectively. Thanks to its conditional parameterization, ForestFlow shows similar performance for ionization histories and two ΛCDM model extensions – massive neutrinos and curvature – even though none of these are included in the training set. This framework will enable full-scale cosmological analyses of Lyman-α forest measurements from the DESI survey.

Original languageEnglish
Article numberA187
Number of pages18
JournalAstronomy and Astrophysics
Volume694
DOIs
Publication statusPublished - 1 Feb 2025

Keywords

  • cosmological parameters
  • cosmology: theory
  • large-scale structure of Universe

Fingerprint

Dive into the research topics of 'ForestFlow: predicting the Lyman-α forest clustering from linear to nonlinear scales'. Together they form a unique fingerprint.

Cite this