From source to emplacement: the origin of leucogranites from the Sikkim-Darjeeling Himalayas, India

Tanya Srivastava, Nigel Harris, Catherine Mottram, Kumar Batuk Joshi, Nishchal Wanjari

    Research output: Contribution to journalArticlepeer-review

    39 Downloads (Pure)

    Abstract

    Himalayan leucogranites are important for understanding the tectonic evolution of collision zones in general and the causes of crustal melting in the Himalayan orogen in particular. This paper aims to understand the melt source and emplacement age of the leucogranites from Sikkim in order to decipher the deep geodynamic processes of the eastern Himalayas. Zircon U-Pb analysis of the Higher Himalayan Sequence (HHS) metamorphic core reveals a prolonged period of crustal melting between > 33 Ma and ca. 14 Ma. Major and trace element abundances are presented for 27 leucogranites from North Sikkim that are classified into two-mica and tourmaline leucogranite types. They are peraluminous in composition, characterized by high SiO2 (70.91–74.9 wt.%), Al2O3 (13.69–15.82 wt.%), and low MgO (0.13–0.74 wt.%). Elemental abundances suggest that Sikkim Himalayan leucogranites are derived from crustal melts. The two-mica leucogranites are derived from a metagreywacke source, whereas the tourmaline leucogranites are sourced from metapelitic sources, with inherited zircons indicating an HHS origin for both types. U-Pb zircon geochronology of the two mica leucogranites indicates ages of ca. 19–15 Ma, consistent with crustal melting recorded in HHS gneisses from Darjeeling. Monazites from both the two-mica and tourmaline leucogranites yield a crystallization age of ca. 15–14 Ma, coeval with movement on the Main Central Thrust and South Tibetan Detachment System which further provides constraints on the timing and mechanism of petrogenesis of leucogranites in the Sikkim Himalayas.
    Original languageEnglish
    Article number101733
    Number of pages18
    JournalGeoscience Frontiers
    Volume15
    Issue number1
    Early online date28 Oct 2023
    DOIs
    Publication statusPublished - 1 Jan 2024

    Keywords

    • leucogranites
    • gneiss
    • U-Pb geochronology
    • zircon
    • monazite
    • Sikkim-Darjeeling Himalayas
    • UKRI
    • NERC
    • NE/1528018/1

    Cite this