TY - JOUR
T1 - Gemini multi-object spectrograph integral field spectroscopy of a merging system with enhanced Balmer absorption
AU - Swinbank, A. M.
AU - Balogh, Michael L.
AU - Bower, R. G.
AU - Hau, G. K. T.
AU - Allington‐Smith, J. R.
AU - Nichol, Robert C.
AU - Miller, Christopher J.
PY - 2005
Y1 - 2005
N2 - In this paper we present the three-dimensional dynamics of the galaxy SDSS J101345.39+011613.66, selected for its unusually strong Balmer absorption lines [W0(Hδ) = 7.5 Å]. Using the Gemini Multi-Object Spectrograph-South integral field unit (IFU) in nod+shuffle mode, we have mapped the continuum and optical absorption lines of this z = 0.1055 field galaxy. This galaxy has a disturbed morphology, with a halo of diffuse material distributed asymmetrically toward the north. Using the [O II] emission line (W0[O ] = 4.1 Å), we find that the gas and hot OB stars are offset from the older stars in the system. The gas also has a spatially extended and elongated morphology with a velocity gradient of 100 ± 20 km s-1 across 6 kpc in projection. Using the strong Hγ and Hδ absorption lines, we find that the A stars are widely distributed across the system and are not centrally concentrated, arguing that the A star population has formed in molecular clouds outside the nucleus. By cross-correlating the spectra from the data cube with an A star template, we find evidence that the A star population has a 40 km s-1 shear in the same direction as the gas. The disturbed morphology, strong color gradients, and strong Hδ and Hγ absorption lines in SDSS J101345.39 argue that this is a recent tidal interaction/merger between a passive elliptical and a star-forming galaxy. Although based on a single object, these results show that we can spatially resolve and constrain the dynamics of this short-lived (yet important) phase of galaxy formation in which the evolutionary process takes galaxies from star-forming to their quiescent end products.
AB - In this paper we present the three-dimensional dynamics of the galaxy SDSS J101345.39+011613.66, selected for its unusually strong Balmer absorption lines [W0(Hδ) = 7.5 Å]. Using the Gemini Multi-Object Spectrograph-South integral field unit (IFU) in nod+shuffle mode, we have mapped the continuum and optical absorption lines of this z = 0.1055 field galaxy. This galaxy has a disturbed morphology, with a halo of diffuse material distributed asymmetrically toward the north. Using the [O II] emission line (W0[O ] = 4.1 Å), we find that the gas and hot OB stars are offset from the older stars in the system. The gas also has a spatially extended and elongated morphology with a velocity gradient of 100 ± 20 km s-1 across 6 kpc in projection. Using the strong Hγ and Hδ absorption lines, we find that the A stars are widely distributed across the system and are not centrally concentrated, arguing that the A star population has formed in molecular clouds outside the nucleus. By cross-correlating the spectra from the data cube with an A star template, we find evidence that the A star population has a 40 km s-1 shear in the same direction as the gas. The disturbed morphology, strong color gradients, and strong Hδ and Hγ absorption lines in SDSS J101345.39 argue that this is a recent tidal interaction/merger between a passive elliptical and a star-forming galaxy. Although based on a single object, these results show that we can spatially resolve and constrain the dynamics of this short-lived (yet important) phase of galaxy formation in which the evolutionary process takes galaxies from star-forming to their quiescent end products.
U2 - 10.1086/427902
DO - 10.1086/427902
M3 - Article
SN - 0004-637X
VL - 622
SP - 260
EP - 266
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 1
ER -