Gene co-expression network reveals potential new genes related to sugarcane bagasse degradation in Trichoderma reesei RUT-30

Gustavo Pagotto Borin, Marcelo Falsarella Carazzolle, Renato Augusto Corrêa Dos Santos, Diego Mauricio Riaño-Pachón, Juliana Velasco de Castro Oliveira

Research output: Contribution to journalArticlepeer-review

35 Downloads (Pure)


The biomass-degrading fungus Trichoderma reesei has been considered a model for cellulose degradation, and it is the primary source of the industrial enzymatic cocktails used in second-generation (2G) ethanol production. However, although various studies and advances have been conducted to understand the cellulolytic system and the transcriptional regulation of T. reesei, the whole set of genes related to lignocellulose degradation has not been completely elucidated. In this study, we inferred a weighted gene co-expression network analysis based on the transcriptome dataset of the T. reesei RUT-C30 strain aiming to identify new target genes involved in sugarcane bagasse breakdown. In total, ~70% of all the differentially expressed genes were found in 28 highly connected gene modules. Several cellulases, sugar transporters, and hypothetical proteins coding genes upregulated in bagasse were grouped into the same modules. Among them, a single module contained the most representative core of cellulolytic enzymes (cellobiohydrolase, endoglucanase, β-glucosidase, and lytic polysaccharide monooxygenase). In addition, functional analysis using Gene Ontology (GO) revealed various classes of hydrolytic activity, cellulase activity, carbohydrate binding and cation:sugar symporter activity enriched in these modules. Several modules also showed GO enrichment for transcription factor activity, indicating the presence of transcriptional regulators along with the genes involved in cellulose breakdown and sugar transport as well as other genes encoding proteins with unknown functions. Highly connected genes (hubs) were also identified within each module, such as predicted transcription factors and genes encoding hypothetical proteins. In addition, various hubs contained at least one DNA binding site for the master activator Xyr1 according to our in silico analysis. The prediction of Xyr1 binding sites and the co-expression with genes encoding carbohydrate active enzymes and sugar transporters suggest a putative role of these hubs in bagasse cell wall deconstruction. Our results demonstrate a vast range of new promising targets that merit additional studies to improve the cellulolytic potential of T. reesei strains and to decrease the production costs of 2G ethanol.

Original languageEnglish
Article number151
Pages (from-to)1-15
Number of pages15
JournalFrontiers in Bioengineering and Biotechnology
Publication statusPublished - 22 Oct 2018


  • Trichoderma reese
  • sugarcane bagasse
  • 2G ethanol
  • enzymatic cocktail
  • gene co-expression network
  • Xyr1-binding site

Cite this