Generalised gravitational wave burst generation with generative adversarial networks

J. McGinn*, C. Messenger, M. J. Williams, I. S. Heng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

52 Downloads (Pure)

Abstract

We introduce the use of conditional generative adversarial networks (CGANs) for generalised gravitational wave (GW) burst generation in the time domain. Generative adversarial networks are generative machine learning models that produce new data based on the features of the training data set. We condition the network on five classes of time-series signals that are often used to characterise GWburst searches: sine-Gaussian, ringdown, white noise burst, Gaussian pulse and binary black hole merger. We show that the model can replicate the features of these standard signal classes and, in addition, produce generalised burst signals through interpolation and class mixing.We also present an example application where a convolutional neural network (CNN) classifier is trained on burst signals generated by our CGAN.We show that a CNN classifier trained only on the standard five signal classes has a poorer detection efficiency than a CNN classifier trained on a population of generalised burst signals drawn from the combined signal class space.

Original languageEnglish
Article number155005
Number of pages22
JournalClassical and Quantum Gravity
Volume38
Issue number15
DOIs
Publication statusPublished - 30 Jun 2021
Externally publishedYes

Keywords

  • Generative adversarial networks
  • Gravitational wave bursts
  • Gravitational waves
  • Machine learning
  • UKRI
  • STFC
  • ST/R001928/1
  • ST/R002770/1
  • ST/L000946/1

Fingerprint

Dive into the research topics of 'Generalised gravitational wave burst generation with generative adversarial networks'. Together they form a unique fingerprint.

Cite this