Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish

Carmelo Fruciano, Paolo Franchini, Viera Kovacova, Kathryn R. Elmer, Frederico Henning, Axel Meyer*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    77 Downloads (Pure)

    Abstract

    Our understanding of how biological diversity arises is limited, especially in the case of speciation in the face of gene flow. Here we investigate the genomic basis of adaptive traits, focusing on a sympatrically diverging species pair of crater lake cichlid fishes. We identify the main quantitative trait loci (QTL) for two eco-morphological traits: body shape and pharyngeal jaw morphology. These traits diverge in parallel between benthic and limnetic species in the repeated adaptive radiations of this and other fish lineages. Remarkably, a single chromosomal region contains the highest effect size QTL for both traits. Transcriptomic data show that the QTL regions contain genes putatively under selection. Independent population genomic data corroborate QTL regions as areas of high differentiation between the sympatric sister species. Our results provide empirical support for current theoretical models that emphasize the importance of genetic linkage and pleiotropy in facilitating rapid divergence in sympatry.

    Original languageEnglish
    Article number12736
    Number of pages8
    JournalNature Communications
    Volume7
    DOIs
    Publication statusPublished - 6 Sept 2016

    Fingerprint

    Dive into the research topics of 'Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish'. Together they form a unique fingerprint.

    Cite this